Skip to main content

Links Between Viral Infections and Heart Disease

  • Chapter
Book cover Cardiomyopathies and Heart Failure

Abstract

Several different viruses have been isolated from diseased heart tissues of infants and children, rarely adults. Molecular nucleic acid (in situ hybridization and PCR) and serologic studies of adult heart tissues and sera, respectively, identified five potential major viral etiologic agents of heart disease, with enteroviruses being most frequent. Most coxsackievirus, specifically CVB3, strains (~80%) isolated from humans are not cardiovirulent in mice. Excellent CVB3-murine models of acute and chronic myocarditis exist. The age, gender and genetic background of the murine strain at infection with a cardiovirulent CVB3 determine whether acute myocarditis is resolved or transits to chronic heart disease. In murine models of CVB3-induced chronic disease, infectious virus is rarely isolated from heart tissue at 14-20 days post-inoculation (pj.), yet months later in situ hybridization or RT-PCR can detect CVB3 genomic sequences in focal myocardial lesions. Murine strains with CVB3-induced chronic myocarditis develop humoral and cell-mediated autoimmune responses to cardiac myosin and other normal host molecules. Some neutralizing monoclonal antibodies to CVB3 recognize epitopes on cardiac myosin and induce myocardial disease. Conversely, some monoclonal antibodies to murine and human cardiac myosin neutralize CVB3 or bind to epitopes on CVB3 capsid proteins. CVB3 infection of murine strains with specific genetic backgrounds induces chronic myocarditis whose immunopathogenesis involves autoimmune responses via molecular mimicry to heart tissue antigens. However, the persistent viral RNA in heart tissue cells provides the focus, via induction of proinflammatory cytokines, for targeting autoimmune responses to induce focal myocardial lesions in those strains of mice that develop CVB3-induced chronic myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Towbin JA. Myocarditis and Pericarditis in Adolescents. Adoles Med: State of the Art Reviews 2001;12:47–67.

    CAS  Google Scholar 

  2. Kim KS, Hofling K, Carson S.D, et al. “The Primary Viruses of Myocarditis.” In Myocarditis, Cooper LS, Knowlton K, eds. Rochester, MN: Mayo Academic Press, 2002.

    Google Scholar 

  3. Martino T, Liu P, Petric M, et al. “Enteroviral Myocarditis and Dilated Cardiomyopathy: A Review of Clinical and Experimental Studies.” In Human Enterovirus Infections, Rotbart HA, ed. Washington, DC: ASM Press, 1995.

    Google Scholar 

  4. Bowles N.E., Towbin J.A. Molecular Aspects of Myocarditis. Curr Inf Dis Reports 2000;2:308–314.

    Article  Google Scholar 

  5. Tracy S, Chapman NM, Mahy BWJ. The Coxsackie B Viruses. Curr Top Microbiol Immunol 1997;223:1–303.

    Article  Google Scholar 

  6. Maisch B. Myocarditis. Curr Opin Cardiol 1990;5:320–327.

    Article  Google Scholar 

  7. Matsumori A. Molecular and Immune Mechanisms in the Pathogenesis of Cardiomyopathy: Role of Viruses, Cytokines and Nitric Oxide. Jpn Circ J 1997;61:275–291.

    Article  PubMed  CAS  Google Scholar 

  8. Matsumori A, Ohashi N, Hasegawa K, et al. Hepatitis C Virus Infection and Heart Diseases: A Multicenter Study in Japan. Jpn Circ J 1998;62:389–391.

    Article  PubMed  CAS  Google Scholar 

  9. Woodruff JF. Viral Myocarditis. Am J Pathol 1980;101:425–484.

    PubMed  CAS  Google Scholar 

  10. Khatib R, Probert A, Reyes MP, et al. Mouse Strain-Related Variation as a Factor in the Pathogenesis of Coxsackievirus B3 Murine Myocarditis. J Gen Virol 1987;68:2981–2988.

    Article  PubMed  Google Scholar 

  11. Rose NR, Neumann DA, Herskowitz A. Coxsackievirus Myocarditis. Adv Internal Med 1992;37:411–429.

    CAS  Google Scholar 

  12. Tracy S, Chapman NM, McManus BM, et al. A Molecular and Serologic Evaluation of Enteroviral Involvement in Human Myocarditis. J Mol Cell Cardiol 1990;22:403–414.

    Article  PubMed  CAS  Google Scholar 

  13. Gauntt, CJ. Introduction and Historical Perspective on Experimental Myocarditis. In: Myocarditis. Cooper LT, Knowlton K, eds. Rochester, MN: Mayo Academic Press, 2002.

    Google Scholar 

  14. Hilton DA, Variend S, Pringle JH. Demonstration of Coxsackievirus RNA in Formalin-Fixed Tissue Sections from Childhood Myocarditis Cases by In Situ Hybridization and the Polymerase Chain Reaction. J Pathol 1993;170:45–51.

    Article  PubMed  CAS  Google Scholar 

  15. Why H, Meany T, Richardson P, et al. Clinical and Prognostic Significance of Detection of Enteroviral RNA in the Myocardium of Patients with Myocarditis or Dilated Cardiomyopathy. Circulation 1994;89:2582–2589.

    Article  PubMed  CAS  Google Scholar 

  16. Satoh M, Tamura G, Segawa I, et al. Expression of Cytokine Genes and Presence of Enteroviral Genomic RNA in Endomyocardial Biopsy Tissues of Myocarditis and Dilated Cardiomyopathy. Virchows Arch 1996;427:503–509.

    Article  PubMed  CAS  Google Scholar 

  17. Andreoletti L, Hober D, Decoene C, et al. Detection of Enteroviral RNA By Polymerase Chain Reaction in Endomyocardial Tissue of Patients with Chronic Cardiac Diseases. J Med Virol 1996; 48:53–59.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumori A, Matoba Y, Nishio R, et al. Detection of Hepatitis C Virus RNA from the Heart of Patients with Hypertrophic Cardiomyopathy. Biochem Biophys Res Commun 1996;222:678–682.

    Article  PubMed  CAS  Google Scholar 

  19. Baboonian C, Treasure T. Meta-Analysis of the Association of Enteroviruses with Human Heart Disease. Heart 1997;78:539–543

    PubMed  CAS  Google Scholar 

  20. Huber SA, Gauntt CJ, Sakkinen P. Enteroviruses and Myocarditis: Viral Pathogenesis Through Replication, Cytokine Induction and Immunopathogenicity. Adv Virus Res 1998;51:35–80.

    Article  PubMed  CAS  Google Scholar 

  21. Chow LH, Gauntt CJ, McManus BM. Differential Effects of Myocarditis Variants of Coxsackievirus B3 in Inbred Mice: A Pathologic Characterization of Heart Tissue Damage. Lab Invest 1991;64:55–64.

    PubMed  CAS  Google Scholar 

  22. Gauntt C, Higdon A, Bowers D, et al. What Lessons Can be Learned from Animal Models Studies in Viral Heart Diseases? Scand J Infect Dis 1993;88:49–65.

    CAS  Google Scholar 

  23. Huber S. Coxsackievirus-Induced Myocarditis is Dependent on Distinct Immunopathogenic Responses in Different Strains of Mice. Lab Invest 1997;76:691–701.

    PubMed  CAS  Google Scholar 

  24. Huber SA, Pfaeffle B. Differential Tr1 and Th2 Cell Responses in Male and Female BALB/c Mice Infected with Coxsackievirus Group B type 3. J Virol 1994;68:5126–5132.

    PubMed  CAS  Google Scholar 

  25. Gauntt CJ, Sakkinen P, Rose NR, et al. Picornaviruses: Immunopathology and Autoimmunity. In: Effects of Microbes on the Immune System. Cunningham, MW, Fujinami, RS, eds.; Philadelphia, PA: Lippincott-Raven Publishers, 1999.

    Google Scholar 

  26. Gauntt CJ, Pallansch MA. Coxsackievirus B3 Clinical Isolates and Murine Myocarditis. Virus Res 1996;41:89–99.

    Article  PubMed  CAS  Google Scholar 

  27. Tracy S, Hofling K, Pirruccello S, et al. Group B Coxsackievirus Myocarditis and Pancreatitis in Mice: Connection Between Viral Virulence Phenotypes In Mice. J Med Virol 2000;62:70–81.

    Article  PubMed  CAS  Google Scholar 

  28. Chapman NM, Tu Z, Tracy S, et al. An Infectious cDNA Copy of the Genome of a Non-Cardiovirulent Coxsackievirus B3 Strain: Its Complete Sequence and Analysis and Comparison to the Genomes of Cardiovirulent Viruses. Arch Virol 1994;135:115–130.

    Article  PubMed  CAS  Google Scholar 

  29. Lee C, Maull E, Chapman N, et al. Genomic Regions of Coxsackievirus B3 Associated with Cardiovirulence. J Med Virol 1997;52:341–347.

    Article  PubMed  CAS  Google Scholar 

  30. Dunn JJ, Chapman NM, Tracy S, et al. Genomic Determinants of Cardiovirulence in Coxsackievirus B3 Clinical Isolates: Localization to the 5’ Nontranslated Region. J Virol 2000;74:4787–4794.

    Article  PubMed  CAS  Google Scholar 

  31. Knowlton KU, Jeon E, Berkley N, et al. A Mutation in the Puff Region of VP2 Attenuates the Myocarditic Phenotype of an Infectious cDNA of the Woodruff Variant of Coxsackievirus B3. J Virol 1996;70:7811–7818.

    PubMed  CAS  Google Scholar 

  32. Klingel K, Kandolf R. The Role of Enterovirus Replication in the Development of Acute and Chronic Heart Muscle Disease in Different Immunocompetent Mouse Strains. Scand J Infect Dis 1993;88:79–85.

    CAS  Google Scholar 

  33. Loria RM. “Host Conditions Affecting the Course of Coxsackievirus Infections.” In Infectious Agents and Pathogenesis: Coxsackieviruses. A General Update. Bendinelli M, Friedman H, eds. New York, NY: Plenum Press, 1987.

    Google Scholar 

  34. Traystman M, Chow L, McManus BM, et al. Susceptibility to Coxsackievirus B3-Induced Chronic Myocarditis Maps Near the Murine Tcr and Myhc Alpha Loci on Chromosome 14. Am J Pathol 1991;138:721–726.

    PubMed  CAS  Google Scholar 

  35. Huber S, Gauntt CJ. “Susceptibility to Coxsackievirus B3-Induced Proteins Leads to Both Humoral and Cellular Autoimmunity to Heart Proteins.” In: Molecular Mimicry, Microbes, and Autoimmunity. Cunningham MW, Fujinami RS, eds. Washington, D.C.: ASM Press, 2000.

    Google Scholar 

  36. Gauntt CJ. Roles of the Humoral Response in Coxsackievirus B-Induced Disease. Curr Top Microbiol Immunol 1997;223:259–282.

    Article  PubMed  CAS  Google Scholar 

  37. Wolfgram LJ, Rose NR. Coxsackievirus Infection as a Trigger of Cardiac Autoimmunity. Immunol Res 1989;8:61–80.

    Article  PubMed  CAS  Google Scholar 

  38. Maisch B, Bauer E, Cirsi M, et al. Cytolytic Cross-Reactive Antibodies Directed Against the Cardiac Membrane and Viral Proteins in Coxsackievirus B3 and B4 Myocarditis. Characterization and Pathogenetic Relevance. Circulation 1993;87:IV49–IV65.

    PubMed  CAS  Google Scholar 

  39. Schultheiss HP, Schulze K, Dorner A. Significance of the Adenine Nucleotide Translocator in the Pathogenesis of Viral Heart Disease. Mol Cell Biochem 1996;163–164:319–327.

    Article  PubMed  Google Scholar 

  40. Traystman D, Beisel K. Genetic Control of Coxsackievirus B3-Induced Heart-Specific Autoantibodies Associated with Chronic Myocarditis. Clin Exp Immunopathol 1991;86:291–298.

    Article  CAS  Google Scholar 

  41. Schwimmbeck PL, Schwimmbeck NK, Schultheiss HP, et al. Mapping of Antigenic Determinants of the Adenine-Nucleotide Translocator and Coxsackie B3 Virus with Synthetic Peptides: Use for the Diagnosis of Viral Heart Disease. Clin Immunol Immunopathol 1993;68:135–140.

    Article  PubMed  CAS  Google Scholar 

  42. Gauntt CJ, Arizpe HM, Higdon AL, et al. Molecular Mimicry, Anti-Coxsackievirus B3 Neutralizing Monoclonal Antibodies and Myocarditis. J Immunol 1995;154:2983–2995.

    PubMed  CAS  Google Scholar 

  43. Huber SA, Stone JE, Wagner DH Jr, et al. Gamma Delta+ T Cells Regulate Major Histocompatibility Complex Class II (IA and IE)-Dependent Susceptibility to Coxsackievirus B3-Induced Autoimmune Myocarditis. J Virol 1999;73:5630–5636.

    PubMed  CAS  Google Scholar 

  44. Schwimmbeck PL, Huber S, Schultheiss HP. Roles of T Cells in Coxsackievirus B-Induced Disease. Curr Top Microbiol Immunol 1997;223:283–303.

    Article  PubMed  CAS  Google Scholar 

  45. Kandolf R. The Impact of Recombinant DNA Technology on the Study of Enterovirus Heart Disease. In: Coxsackieviruses. A General Update. Bendinelli M, Friedman H, eds. New York, NY: Plenum Press, 1988.

    Google Scholar 

  46. Jin O, Sole MJ, Butany JW, et al. Detection of Enterovirus RNA in Myocardial Biopsies from Patients with Myocarditis and Cardiomyopathy Using Gene Amplification by Polymerase Chain Reaction. Circulation 1990;82:8–16.

    Article  PubMed  CAS  Google Scholar 

  47. Klingel K, Stephans S, Sauter M, et al. Pathogenesis of Murine Enterovirus Myocarditis: Virus Dissemination and Immune Cell Targets. J Virol 1996;70:8888–8895.

    PubMed  CAS  Google Scholar 

  48. Chapman NM, Tracy S, Gauntt CJ, et al. Molecular Detection and Identification of Enteroviruses Using Enzymatic Amplification and Nucleic Acid Hybridization. J Clin Micro 1990;28:843–850.

    CAS  Google Scholar 

  49. Tarn PE, Messner RP. Molecular Mechanisms of Coxsackievirus Persistence in Chronic Inflammatory Myopathy: Viral RNA Persists Through Formation of a Double-Stranded Complex without Associated Genomic Mutations or Evolution. J Virol 1999,73:10113–10121.

    Google Scholar 

  50. Matsumori A, Yamada T, Suzuki H. Increased Circulating Cytokines in Patients with Myocarditis and Cardiomyopathy. Br Heart J 1994;72:561–566.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, P. “The Role of Cytokines in the Pathogenesis.” In: The Role of Immune Mechanisms in Cardiovascular Disease. Schultheiss HP, Schwimmbeck P, eds. Berlin; New York: Springer, 1997.

    Google Scholar 

  52. Freeman G, Colston J, Zabalgoitia M, et al. Contractile Coxsackievirus Depression and Expression of Proinflammatory Cytokines and iNOS in Viral Myocarditis. Am J Physiol 1998;274:H249–H258.

    PubMed  CAS  Google Scholar 

  53. Henke A, Mohr C, Sprenger H, et al. B3-Induced Production of Tumor Necrosis factor-α, IL-lβ, and IL-6 in Human Monocytes. J Immunol 1992;148:2270–2277.

    PubMed  CAS  Google Scholar 

  54. Kandolf R, Canu A, HofSchneider PH. Coxsackie B3 Virus can Replicate in Cultured Human Foetal Heart Cells and is Inhibited by Interferon. J Mol Cell Cardiol 1985;17:167–181.

    Article  PubMed  CAS  Google Scholar 

  55. Lutton CW, Gauntt CJ. Ameliorating Effect of IFN-α and Anti-IFN-β on Coxsackievirus B3-Induced Myocarditis in Mice. J Interferon Res 1985;5:137–146.

    Article  PubMed  CAS  Google Scholar 

  56. Pevear DC, Tull TM, Seipel ME, et al. Activity of Pleconaril Against Enteroviruses. Antimicrob Agents Chemother 1999;43:2109–2115.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gauntt, C.J., Montellano, R., Skogg, T.A. (2003). Links Between Viral Infections and Heart Disease. In: Matsumori, A. (eds) Cardiomyopathies and Heart Failure. Developments in Cardiovascular Medicine, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9264-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9264-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4865-8

  • Online ISBN: 978-1-4419-9264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics