Cardiomyopathies and Heart Failure

Biomolecular, Infectious and Immune Mechanisms
  • Akira Matsumori
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 248)


The clinical presentation of viral myocarditis is variable. When myocardial necrosis is diffuse, congestive heart failure develops, and later, dilated cardiomyopathy. If the myocardial lesions are localized, a ventricular aneurysm forms. When complicated by arrhythmias, myocarditis presents as arrhythmogenic right ventricular cardiomyopathy. When myocardial necrosis is localized to the subendocardial region, restrictive cardiomyopathy may develop. While it has not been established that hypertrophic cardiomyopathy may be a complication of viral myocarditis, asymmetrical septal hypertrophy has, in fact, sometimes been observed in patients with myocarditis. The importance of hepatitis C virus infection has recently been noted in patients with myocarditis, dilated and hypertrophic cardiomyopathy.


Hepatocyte Growth Factor Dilate Cardiomyopathy Hypertrophic Cardiomyopathy Myocardial Necrosis Arrhythmogenic Right Ventricular Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson P, Mckenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation. 1996;93:841–842.PubMedCrossRefGoogle Scholar
  2. 2.
    Matsumori A. Molecular and Immune Mechanisms in the Pathogenesis of Cardiomyopathy. JpnCirc J 1997;61:275–291.Google Scholar
  3. 3.
    Miura K, Nakagawa H, Morikawa Y, et al. Epidemiology of Idiopathic Cardiomyopathy in Japan: Results from a Nationwide Survey. Heart 2002;87:126–130.PubMedCrossRefGoogle Scholar
  4. 4.
    Matsumori A, Furukawa Y, Hasegawa K, et al. Epidemiologic and Clinical Characteristics of Carchomyopathis in Japan -Results From Nationwide Surveys. Circ J 2002;66:323–336.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawai C, Matsumori A, Fujiwara H. Myocarditis and Dilated Cardiomyopathy. Annu Rev Med 1987;38:221–239.PubMedCrossRefGoogle Scholar
  6. 6.
    Abelmann WH, Lorell BH. The Challenge of Cardiomyopathy. J Am Coll Cardiol 1989;13:1219–1239.PubMedCrossRefGoogle Scholar
  7. 7.
    Olinde KD, O’Connell JB. Inflammatory Heart Disease: Pathogenesis, Clinical Manifestations, and Treatment of Myocarditis. Annu Rev Med 1994;45:481–490.PubMedCrossRefGoogle Scholar
  8. 8.
    Caforio ALP, Stewart JT, McKenna WJ. Idiopathic Dilated Cardiomyopathy. Br Med J 1990;300:890–891.CrossRefGoogle Scholar
  9. 9.
    Johnson RA, Palacios I. Dilated Cardiomyopathies of the Adult. N Engl J Med 1982;307:1119–1126.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsumori A, Kawai C. An Experimental Model for Congestive Heart Failure after Ancephalomyocarditis Virus Myocarditis in Mice. Circulation 1982;65:1230–1235.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumori A, Kawai C. An Animal Model of Congestive (Dilated) Cardiomyopathy: Dilatation and Hypertrophy of the Heart in the Chronic Stage in DBA/2 Mice with Myocarditis Caused by Encephalomyocarditis Virus. Circulation 1982;66:377–380.CrossRefGoogle Scholar
  12. 12.
    Matsumori A. “Animal Models: Pathological Findings and Therapeutic Considerations.” In Viral Infection of the Heart. Banatvala JE, ed. Kent: Edward Arnold 1993.Google Scholar
  13. 13.
    Feldman AM, McNamara D. Myocarditis. N Engl J Med 2000;343:1388–1398.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu PP, Mason JW. Advances in the Understanding of Myocarditis. Circulation 2001;104:1076–1082.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawano H, Kawai S, Nishijo T, et al. An Autopsy Case of Hypertrophic Cardiomyopathy with Pathological Findings Suggesting Chronic Myocarditis. Jpn Heart J 1994;35:95–105.PubMedCrossRefGoogle Scholar
  16. 16.
    Matsumori A, Matoba Y, Sasayama S. Dilated Cardiomyopathy Associated with Hepatitis C Virus Infection. Circulation 1995;92:2519–2525.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumori A, Matoba Y, Nishio R, et al. Detection of Hepatitis C Virus RNA from the Heart of Patients with Hypertrophic Cardiomyopathy. Biochem Biophys Res Commun 1996;222:678–682.CrossRefGoogle Scholar
  18. 18.
    Matsumori A. Molecular and Immune Mechanisms in the Pathogenesis of Cardiomyopathy: Role of Viruses, Cytokines, and Nitric Oxide. Jpn Circ J 1997;61:275–291.PubMedCrossRefGoogle Scholar
  19. 19.
    Okabe M, Fukuda K, Arakawa K, et al. Chronic Variant of Myocarditis Associated with Hepatitis C Virus Infection. Circulation 1997;96:22–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumori A, Ohashi N, Hasegawa K, et al. Hepatitis C Virus Infection and Heart Diseases. A Multicenter Study in Japan. Jpn Circ J 1998;62:389–391.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumori A, Ohashi N, Sasayama S. Hepatitis C Virus Infection and Hypertrophic Cardiomyopathy. Ann Int Med 1998;129:749–750.PubMedGoogle Scholar
  22. 22.
    Matsumori A, Ohashi N, Nishio R, et al. Apical Hypertrophic Cardiomyopathy and Hepatitis C Virus Infection. Jpn Circ J 1999;63:433–438.PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda A, Sakata A, Takeda N. Detection of Hepatitis C Virus RNA in the Hearts of Patients with Hepatogenic Cardiomyopathy. Mol Cell Biochem 1999;195:257–261.PubMedCrossRefGoogle Scholar
  24. 24.
    Ooyake N, Kuzuo H, Hirano Y, et al. Myocardial Injury Induced by Hepatitis C Virus and Interferon Therapy. Presented at the 96th Annual Scientific Meeting of the Japanese Society of Internal Medicine, Tokyo, 1999.Google Scholar
  25. 25.
    Sato Y, Takatsu Y, Yamada T, et al. Interferon Treatment for Dilated Cardiomyopathy and Striated Myopathy Associated with Hepatitis C Virus Infection Based on Serial Measurements of Serum Concentration of Cardiac Troponin T. Jpn Circ 2000;64:321–324.CrossRefGoogle Scholar
  26. 26.
    Nakamura K, Matsumori A, Kusano et al. Hepatitis C Virus Infection in a Patient with Dermatomyositis and Left Ventricular Dysfunction. Jpn Circ J 2000;64:617–618.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsumori A, Yutani C, Ikeda Y, et al. Hepatitis C Virus from the Hearts of Patients with Myocarditis and Cardiomyopathy. Lab Invest 2000;80:1137–1142.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumori A. Myocardial Diseases, Nephritis, and Vasculitis Associated with Hepatitis Virus. Intern Med 2001;40:78–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Dalekos GN, Achenbach K, Christodoulou D, et al. Idiopathic Dilated Cardiomyopathy: Lack of Association with Hepatitis C Virus Infection. Heart 1998;80:270–275.PubMedGoogle Scholar
  30. 30.
    Parti D, Poli F, Forma E, et al. Multicenter Study on Hepatitis C Virus Infection in Patients with Dilated Cardiomyopathy. North Italy Transplant Program (NITP). J Med Virol 1999;58:116–120.CrossRefGoogle Scholar
  31. 31.
    Sato Y, Taniguchi R, Yamada T, et al. Measurements of Serum Concentrations of Cardiac Troponin T in Patients with Hypereosinophilic Syndrome: A Sensitive Non-Invasive Marker of Cardiac Disorder. Intern Med 2000;39:350.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsumori A. Cytokines in Myocarditis and Cardiomyopathies. Curr Opin Cardiol 1996;11:302–309PubMedCrossRefGoogle Scholar
  33. 33.
    Matsumori A, Yamada T, Suzuki H, et al. Increased Circulating Cytokines in Patients with Cardiomyopathy and Myocarditis. Br Heart J 1994;72:561–566.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsumori A, Sasayama S. The Role of Inflammatory Mediators in the Failing Heart: Immunomodulation of Cytokines in Experimental Models of Heart Failure. Heart Fail Rev 2001;6:129–136.PubMedCrossRefGoogle Scholar
  35. 35.
    Bozkurt B, Kribbs SB, Clubb FJ, Jr, et al. Pathophysiologically Relevant Concentrations of Tumor Necrosis Factor-Promote Progressive Left Ventricular Dysfunction and Remodeling in Rats. Circulation 1998;97:1382–1391.PubMedCrossRefGoogle Scholar
  36. 36.
    Bryant D, Becker L, Richardson J, et al. Cardiac Failure in Transgenic Mice with Myocardial Expression of Tumor Necrosis Factor-α. Circulation 1998;97:1375–1381.PubMedCrossRefGoogle Scholar
  37. 37.
    Kubota T, Bounoutas GS, Miyagishima M, et al. Soluble Tumor Necrosis Factor Receptor Abrogates Myocardial Inflammation but not Hypertrophy in Cytokine-Induced Cardiomyopathy. Circulation 2000;101:2518–2525.PubMedCrossRefGoogle Scholar
  38. 38.
    Kadokami T, McTiernan CF, Kubota T, et al. Sex-Related Survival Differences in Murine Cardiomyopathy are Associated with Differences in TNF-Receptor Expression. J Clin Invest 2000;106:589–597.PubMedCrossRefGoogle Scholar
  39. 39.
    Oyama J, Shimokawa H, Momii H, et al. Role of Nitric Oxide and Peroxynitrite in the Cytokine-Induced Sustained Myocardial Dysfunction in Dogs In Vivo. J Clin Invest 1998;101:2207–2214.PubMedCrossRefGoogle Scholar
  40. 40.
    Shioi T, Matsumori A, Sasayama S. Persistent Expression of Cytokine in the Chronic Stage of Viral Myocarditis in Mice. Circulation 1996;94:2930–2937.PubMedCrossRefGoogle Scholar
  41. 41.
    Shioi T, Matsumori A, Kihara Y, et al. Increased Expression of Interleukin-1 beta and Monocyte Chemotactic and Activating Factor (MCAF)/ Monocyte Chemoattractant Protein-1 (MCP-1) in the Hypertrophied and Failing Heart with Pressure Overload. Circ Res 1997:81:664–671.PubMedCrossRefGoogle Scholar
  42. 42.
    Okada M, Matsumori A, Ono K, et al. Cyclical Stretch Upregulates the Production of Interleukin-8 and Monocyte Chemotactic and Activating Factor/Monocyte Chemoattractant Protein-1 in Human Endothelial Cells. Arterioscler Thromb Vasc Biol 1998;18:894–901.PubMedCrossRefGoogle Scholar
  43. 43.
    Ono K, Matsumori A, Shioi T, et al. Cytokine Gene Expression after Myocardial Infarction in Rat Hearts. Possible Implication in Left Ventricular Remodeling. Circulation 1998;1 98:149–156.CrossRefGoogle Scholar
  44. 44.
    Ono K, Matsumori A, Furukawa Y, et al. Prevention of Myocardial Reperfusion Injury in Rats by an Antibody Against Monocyte Chemotactic and Activating Factor/Monocyte Chemoattractant Protein-1. Lab Invest 1999;79:195–203.PubMedGoogle Scholar
  45. 45.
    Hwang MW, Matsumori A, Furukawa Y, et al. Neutralization of Interleukin-1 beta in the Acute Phase of Myocardial Infarction Promotes the Progression of Left Ventricular Remodeling. J Am Coll Cardiol 2001;38:1546–1553.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsumori A, Furukawa Y, Hashimoto T, et al. Increased Circulating Hepatocyte Growth Factor in the Early Stage of Acute Myocardial Infarction. Biochem Biophys Res Commun 1996;221:391–395.PubMedCrossRefGoogle Scholar
  47. 47.
    Patella V, Marino I, Arbustini E, et al. Stem Cell Factor in Mast Cells and Increased Mast Cell Density in Idiopathic and Ischemic Cardiomyopathy. Circulation 1998;97:971–978.PubMedCrossRefGoogle Scholar
  48. 48.
    Frangogiannis NG, Perrard JL, Mendoza LH, et al. Stem Cell Factor Induction is Associated with Mast Cell Accumulation After Canine Myocardial Ischemia and Reperfusion. Circulation 1998;98:687–698.PubMedCrossRefGoogle Scholar
  49. 49.
    Hara M, Ono K, Hwang MW, et al. Evidence for a Role of Mast Cells in the Evolution to Congestive Heart Failure. J Exp Med 2002;1195:375–381.CrossRefGoogle Scholar
  50. 50.
    Matsumori A, Ono K, Okada M, et al. Immediate Increase in Circulating Hepatocyte Growth Factor/Scatter Factor by Heparin. J Mol Cell Cardiol 1998;30:2145–2149.PubMedCrossRefGoogle Scholar
  51. 51.
    Okada M, Matsumori A, Ono K, et al. Hepatocyte Growth Factor is a Major Mediator in Heparin-Induced Angiogenesis. Biochem Biophys Res Commun 1999;255:80–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Akira Matsumori
    • 1
  1. 1.Department of Cardiovascular MedicineKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations