Skip to main content

Role of Na+/Ca2+ Exchange in Contraction and Relaxation in Immature Ventricular Myocytes

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 116 Accesses

Abstract

Transient changes in Ca2+ activity within the cytosol are important determinants of myocardial contraction and relaxation. The cellular processes responsible for regulation of intracellular Ca2+ concentration undergo major changes during maturation of the heart. The immature rabbit heart relies on transsarcolemmal Ca2+ entry and efflux via the Na+/Ca2+ exchanger for contraction and relaxation. Exchanger activity and amounts of immunoreactive protein and mRNA are increased in immature rabbit hearts compared to adults. Further support for the importance of Na+/Ca2+ exchange in the immature heart comes from observations that exchanger current density in newborn is about four fold higher than adult rabbit myocytes and exchanger activity is sufficient for normal contraction and relaxation in neonatal myocytes. Thus, in contrast to the well described role of the Na+/Ca2+ exchanger in mature myocardium, the Na+/Ca2+ exchanger appears to be the predominate pathway for calcium transport to and removal from the contractile elements in immature ventricular myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bers DM. 1991. Excitation-Contraction Coupling and Cardiac Contractile force. The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  2. Bassani JW, Bassani RA, Bers DM. 1994. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293.

    PubMed  CAS  Google Scholar 

  3. Bassani RA, Bassani JW, Bers DM. 1992. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453:591–608.

    PubMed  CAS  Google Scholar 

  4. Kaufman TM, Horton JW, White DJ, Mahony L. 1990. Age-related changes in myocardial relaxation and sarcoplasmic reticulum function. Am J Physiol 259:H309–H316.

    PubMed  CAS  Google Scholar 

  5. Nakanishi T, Jarmakani JM. 1981. Effect of extracellular sodium on mechanical function in the newborn rabbit. Dev Pharmacol Ther 2:188–200.

    PubMed  CAS  Google Scholar 

  6. Artman M. 1992. Sarcolemmal Na+−Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 263:H1506–H1513.

    PubMed  CAS  Google Scholar 

  7. Chin TK, Friedman WF, Klitzner TS. 1990. Developmental changes in cardiac myocyte calcium regulation. Circ Res 67:574–579.

    Article  PubMed  CAS  Google Scholar 

  8. Hoerter JA, Vassort G. 1982. Participation of the sarcolemma in the control of relaxation of the mammalian heart during perinatal development. Adv Myocardiol 3:373–380.

    PubMed  CAS  Google Scholar 

  9. Klitzner T, Friedman WF. 1988. Excitation-contraction coupling in developing mammalian myocardium: evidence from voltage clamp studies. Pediatr Res 23:428–432.

    Article  PubMed  CAS  Google Scholar 

  10. Seguchi M, Harding JA, Jarmakani JM. 1986. Developmental change in the function of sarcoplasmic reticulum. J Mol Cell Cardiol 18:189–195.

    Article  PubMed  CAS  Google Scholar 

  11. Reeves JP, Hale CC. 1984. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259:7733–7739.

    PubMed  CAS  Google Scholar 

  12. Kimura J, Miyamae S, Noma A. 1987. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384:199–222.

    PubMed  CAS  Google Scholar 

  13. Fujioka Y, Komeda M, Matsuoka S. 2000. Stoichiometry of Na+−Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 523 Pt 2:339–351.

    Google Scholar 

  14. Mullins LJ. 1979. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol 236:C103–C110.

    PubMed  CAS  Google Scholar 

  15. Huynh TV, Chen F, Wetzel GT, Friedman WF, Klitzner TS. 1992. Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes. Circ Res 70:508–515.

    Article  PubMed  CAS  Google Scholar 

  16. Nassar R, Reedy MC, Anderson PA. 1987. Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res 61:465–483.

    Article  PubMed  CAS  Google Scholar 

  17. Bassani RA, Shannon TR, Bers DM. 1998. Passive Ca2+ binding in ventricular myocardium of neonatal and adult rats. Cell Calcium 23:433–442.

    Article  PubMed  CAS  Google Scholar 

  18. Haddock PS, Coetzee WA, Artman M. 1997. Na+/Ca2+ exchange current and contractions measured under Cl-free conditions in developing rabbit hearts. Am J Physiol 273:H837–H846.

    PubMed  CAS  Google Scholar 

  19. Boerth SR, Zimmer DB, Artman M. 1994. Steady-state mRNA levels of the sarcolemmal Na+−Ca 2+ exchanger peak near birth in developing rabbit and rat hearts. Circ Res 74:354–359.

    Article  PubMed  CAS  Google Scholar 

  20. Vetter R, Will H. 1986. Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart. J Mol Cell Cardiol 18:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  21. Vetter R, Kemsies C, Schulze W 1987. Sarcolemmal Na+−Ca2+ exchange and sarcoplasmic reticulum Ca2+ uptake in several cardiac preparations. Biomed Biochim Acta 46:S375–S381.

    PubMed  CAS  Google Scholar 

  22. Komuro I, Wenninger KE, Philipson KD, Izumo S. 1992. Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci U S A 89:4769–4773.

    Article  PubMed  CAS  Google Scholar 

  23. Nakanishi T, Seguchi M, Takao A. 1988. Development of the myocardial contractile system. Experientia 44:936–944.

    Article  PubMed  CAS  Google Scholar 

  24. Anversa P, Vitali-Mazza L, Loud AV. 1975. Morphometric and autoradiographic study of developing ventricular and atrial myocardium in fetal rats. Lab Invest 33:696–705.

    PubMed  CAS  Google Scholar 

  25. Kim HD, Kim DJ, Lee IJ, Rah BJ, Sawa Y, Schaper J. 1992. Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol 24:949–965.

    Article  PubMed  CAS  Google Scholar 

  26. Artman M, Ichikawa H, Avkiran M, Coetzee WA. 1995. Na+/Ca2+ exchange current density in cardiac myocytes from rabbits and guinea pigs during postnatal development. Am J Physiol 268:H1714–H1722.

    PubMed  CAS  Google Scholar 

  27. Nakanishi T, Jarmakani JM. 1984. Developmental changes in myocardial mechanical function and subcellular organelles. Am J Physiol 246:H615–H625.

    PubMed  CAS  Google Scholar 

  28. Tanaka H, Shigenobu K. 1989. Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol 21:1305–1313.

    Article  PubMed  CAS  Google Scholar 

  29. Balaguru D, Haddock PS, Puglisi JL, Bers DM, Coetzee WA, Artman M. 1997. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes. J Mol Cell Cardiol 29:2747–2757.

    Article  PubMed  CAS  Google Scholar 

  30. Miller MS, Friedman WF, Wetzel GT. 1997. Caffeine-induced contractions in developing rabbit heart. Pediatr Res 42:287–292.

    Article  PubMed  CAS  Google Scholar 

  31. Huser J, Lipsius SL, Blatter LA. 1996. Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol 494(Pt 3):641–651.

    PubMed  CAS  Google Scholar 

  32. DiFrancesco D, Noble D. 1985. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans R Soc Lond B 307:353–398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Artman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Srivastava, S., Nakamura, T.Y., Coetzee, W.A., Artman, M. (2003). Role of Na+/Ca2+ Exchange in Contraction and Relaxation in Immature Ventricular Myocytes. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics