Role of Na+/Ca2+ Exchange in Contraction and Relaxation in Immature Ventricular Myocytes

  • Shekhar Srivastava
  • Tomoe Y. Nakamura
  • William A. Coetzee
  • Michael Artman
Part of the Progress in Experimental Cardiology book series (PREC, volume 5)


Transient changes in Ca2+ activity within the cytosol are important determinants of myocardial contraction and relaxation. The cellular processes responsible for regulation of intracellular Ca2+ concentration undergo major changes during maturation of the heart. The immature rabbit heart relies on transsarcolemmal Ca2+ entry and efflux via the Na+/Ca2+ exchanger for contraction and relaxation. Exchanger activity and amounts of immunoreactive protein and mRNA are increased in immature rabbit hearts compared to adults. Further support for the importance of Na+/Ca2+ exchange in the immature heart comes from observations that exchanger current density in newborn is about four fold higher than adult rabbit myocytes and exchanger activity is sufficient for normal contraction and relaxation in neonatal myocytes. Thus, in contrast to the well described role of the Na+/Ca2+ exchanger in mature myocardium, the Na+/Ca2+ exchanger appears to be the predominate pathway for calcium transport to and removal from the contractile elements in immature ventricular myocytes.

Key words

Na+−Ca2+ exchange immature heart myocytes contraction relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers DM. 1991. Excitation-Contraction Coupling and Cardiac Contractile force. The Netherlands: Kluwer Academic Publishers.Google Scholar
  2. 2.
    Bassani JW, Bassani RA, Bers DM. 1994. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293.PubMedGoogle Scholar
  3. 3.
    Bassani RA, Bassani JW, Bers DM. 1992. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453:591–608.PubMedGoogle Scholar
  4. 4.
    Kaufman TM, Horton JW, White DJ, Mahony L. 1990. Age-related changes in myocardial relaxation and sarcoplasmic reticulum function. Am J Physiol 259:H309–H316.PubMedGoogle Scholar
  5. 5.
    Nakanishi T, Jarmakani JM. 1981. Effect of extracellular sodium on mechanical function in the newborn rabbit. Dev Pharmacol Ther 2:188–200.PubMedGoogle Scholar
  6. 6.
    Artman M. 1992. Sarcolemmal Na+−Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 263:H1506–H1513.PubMedGoogle Scholar
  7. 7.
    Chin TK, Friedman WF, Klitzner TS. 1990. Developmental changes in cardiac myocyte calcium regulation. Circ Res 67:574–579.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoerter JA, Vassort G. 1982. Participation of the sarcolemma in the control of relaxation of the mammalian heart during perinatal development. Adv Myocardiol 3:373–380.PubMedGoogle Scholar
  9. 9.
    Klitzner T, Friedman WF. 1988. Excitation-contraction coupling in developing mammalian myocardium: evidence from voltage clamp studies. Pediatr Res 23:428–432.PubMedCrossRefGoogle Scholar
  10. 10.
    Seguchi M, Harding JA, Jarmakani JM. 1986. Developmental change in the function of sarcoplasmic reticulum. J Mol Cell Cardiol 18:189–195.PubMedCrossRefGoogle Scholar
  11. 11.
    Reeves JP, Hale CC. 1984. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem 259:7733–7739.PubMedGoogle Scholar
  12. 12.
    Kimura J, Miyamae S, Noma A. 1987. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol 384:199–222.PubMedGoogle Scholar
  13. 13.
    Fujioka Y, Komeda M, Matsuoka S. 2000. Stoichiometry of Na+−Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 523 Pt 2:339–351.Google Scholar
  14. 14.
    Mullins LJ. 1979. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol 236:C103–C110.PubMedGoogle Scholar
  15. 15.
    Huynh TV, Chen F, Wetzel GT, Friedman WF, Klitzner TS. 1992. Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes. Circ Res 70:508–515.PubMedCrossRefGoogle Scholar
  16. 16.
    Nassar R, Reedy MC, Anderson PA. 1987. Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res 61:465–483.PubMedCrossRefGoogle Scholar
  17. 17.
    Bassani RA, Shannon TR, Bers DM. 1998. Passive Ca2+ binding in ventricular myocardium of neonatal and adult rats. Cell Calcium 23:433–442.PubMedCrossRefGoogle Scholar
  18. 18.
    Haddock PS, Coetzee WA, Artman M. 1997. Na+/Ca2+ exchange current and contractions measured under Cl-free conditions in developing rabbit hearts. Am J Physiol 273:H837–H846.PubMedGoogle Scholar
  19. 19.
    Boerth SR, Zimmer DB, Artman M. 1994. Steady-state mRNA levels of the sarcolemmal Na+−Ca 2+ exchanger peak near birth in developing rabbit and rat hearts. Circ Res 74:354–359.PubMedCrossRefGoogle Scholar
  20. 20.
    Vetter R, Will H. 1986. Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart. J Mol Cell Cardiol 18:1267–1275.PubMedCrossRefGoogle Scholar
  21. 21.
    Vetter R, Kemsies C, Schulze W 1987. Sarcolemmal Na+−Ca2+ exchange and sarcoplasmic reticulum Ca2+ uptake in several cardiac preparations. Biomed Biochim Acta 46:S375–S381.PubMedGoogle Scholar
  22. 22.
    Komuro I, Wenninger KE, Philipson KD, Izumo S. 1992. Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci U S A 89:4769–4773.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakanishi T, Seguchi M, Takao A. 1988. Development of the myocardial contractile system. Experientia 44:936–944.PubMedCrossRefGoogle Scholar
  24. 24.
    Anversa P, Vitali-Mazza L, Loud AV. 1975. Morphometric and autoradiographic study of developing ventricular and atrial myocardium in fetal rats. Lab Invest 33:696–705.PubMedGoogle Scholar
  25. 25.
    Kim HD, Kim DJ, Lee IJ, Rah BJ, Sawa Y, Schaper J. 1992. Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol 24:949–965.PubMedCrossRefGoogle Scholar
  26. 26.
    Artman M, Ichikawa H, Avkiran M, Coetzee WA. 1995. Na+/Ca2+ exchange current density in cardiac myocytes from rabbits and guinea pigs during postnatal development. Am J Physiol 268:H1714–H1722.PubMedGoogle Scholar
  27. 27.
    Nakanishi T, Jarmakani JM. 1984. Developmental changes in myocardial mechanical function and subcellular organelles. Am J Physiol 246:H615–H625.PubMedGoogle Scholar
  28. 28.
    Tanaka H, Shigenobu K. 1989. Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol 21:1305–1313.PubMedCrossRefGoogle Scholar
  29. 29.
    Balaguru D, Haddock PS, Puglisi JL, Bers DM, Coetzee WA, Artman M. 1997. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes. J Mol Cell Cardiol 29:2747–2757.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller MS, Friedman WF, Wetzel GT. 1997. Caffeine-induced contractions in developing rabbit heart. Pediatr Res 42:287–292.PubMedCrossRefGoogle Scholar
  31. 31.
    Huser J, Lipsius SL, Blatter LA. 1996. Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol 494(Pt 3):641–651.PubMedGoogle Scholar
  32. 32.
    DiFrancesco D, Noble D. 1985. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans R Soc Lond B 307:353–398.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Shekhar Srivastava
    • 1
  • Tomoe Y. Nakamura
    • 1
  • William A. Coetzee
    • 1
  • Michael Artman
    • 1
  1. 1.Pediatric CardiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations