Skip to main content

Infarct Scar. Living Tissue

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 120 Accesses

Abstract

Heart failure, a worldwide health problem, is most commonly due to ischemic cardiomyopathy (ICM) with previous myocardial infarction(s). Herein, insights into the infarct scar as living tissue (and which resembles heart valve leaflets) are reviewed. This includes: a) its population of persistent, metabolically active myofibroblasts, whose elaboration of angiotensin II regulates (via AT1 receptor-ligand binding) their production of TGF-β1 and, in turn, type I fibrillar collagen; b) its neovasculature, which nourishes these fibroblast-like cells; and c) its contractile tonus. Scar tissue myofibroblasts regulate the accumulation of collagen found at sites remote to the infarct and it is this interstitial fibrosis that represents a major component to the adverse structural remodeling seen in ICM. The management of heart failure due to ICM therefore needs to take into account the behavior of infarct scar myofibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCullough PA, Philbin EF, Spertus JA, Kaatz S, Sandberg KR, Weaver WD. 2002. Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) Study. J Am Coll Cardiol 39:60–69.

    Article  PubMed  Google Scholar 

  2. Kannel WB. 1997. Epidemiology of heart failure in the United States. In: Poole-Wilson PA, Colucci WS, Massie BM, Chatterjee K, Coats AJS, editors. Heart Failure. Scientific Principles and Clinical Practice. New York: Churchill Livingstone; p. 279–288.

    Google Scholar 

  3. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. 1991. The SOLVD Investigators. N Engl J Med 325:293–302.

    Article  Google Scholar 

  4. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. 1992. The SOLVD Investigators. N Engl J Med 327:685–691.

    Article  Google Scholar 

  5. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J. 1998. Apoptosis and myocardial infarction. Basic Res Cardiol 93(Suppl 3):8–12.

    Article  PubMed  Google Scholar 

  6. Anversa P, Kajstura J, Olivetti G. 1996. Myocyte death in heart failure. Curr Opin Cardiol 11:245–251.

    Article  PubMed  CAS  Google Scholar 

  7. Levine SA. 1929. Coronary thrombosis: its various clinical features. Medicine 8:245–418.

    Article  Google Scholar 

  8. Mallory GK, White PD, Salcedo-Salgar J. 1939. The speed of healing of myocardial infarction. A study of the pathologic anatomy in seventy-two cases. Am Heart J 18:647–671.

    Article  Google Scholar 

  9. Lodge-Patch I. 1951. The ageing of cardiac infarcts, and its influence on cardiac rupture. Br Heart J 13:37–42.

    Article  PubMed  CAS  Google Scholar 

  10. Cotran RS, Kumar V, Robbins SL. 1989. Robbins’ Pathologic Basis of Disease. 4th ed. Philadelphia: W B Saunders.

    Google Scholar 

  11. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. 1994. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163.

    Article  PubMed  CAS  Google Scholar 

  12. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT 1995. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292.

    Article  PubMed  CAS  Google Scholar 

  13. Sun Y, Zhang JQ, Zhang J, Lamparter S. 2000. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med 135:316–323.

    Article  PubMed  CAS  Google Scholar 

  14. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. 1996. VEGF, fik-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811.

    PubMed  CAS  Google Scholar 

  15. Sun Y, Weber KT. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858.

    Article  PubMed  CAS  Google Scholar 

  16. Sun Y, Weber KT. 1996. Cells expressing angiotensin II receptors in fibrous tissue of rat heart. Car-diovasc Res 31:518–525.

    CAS  Google Scholar 

  17. Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP. 1995. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338.

    PubMed  CAS  Google Scholar 

  18. Filip DA, Radu A, Simionescu M. 1986. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 59:310–320.

    Article  PubMed  CAS  Google Scholar 

  19. Messier RH, Bass BL, Aly HM, Jones JL, Domkowski PW, Wallace RB, Hopkins RA. 1994. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res 57:1–21.

    Article  PubMed  Google Scholar 

  20. Taylor PM, Allen SP, Yacoub MH. 2000. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 9:150–158.

    PubMed  CAS  Google Scholar 

  21. Chester AH, Misfeld M, Yacoub MH. 2000. Receptor-mediated contraction of aortic valve leaflets. J Heart Valve Dis 9:250–254.

    PubMed  CAS  Google Scholar 

  22. Katwa LC, Ratajska A, Cleutjens JPM, Sun Y, Zhou G, Lee SJ, Weber KT. 1995. Angiotensin converting enzyme and kininase-II-like activities in cultured valvular interstitial cells of the rat heart. Cardiovasc Res 29:57–64.

    PubMed  CAS  Google Scholar 

  23. Katwa LC, Tyagi SC, Campbell SE, Lee SJ, Cicila GT, Weber KT. 1996. Valvular interstitial cells express angiotensinogen, cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 28:807–821.

    Article  PubMed  CAS  Google Scholar 

  24. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141–149.

    Article  PubMed  CAS  Google Scholar 

  25. Pinto JE, Viglione P, Saavedra JM. 1991. Autoradiographic localization and quantification of rat heart angiotensin converting enzyme. Am J Hypertens 4:321–326.

    PubMed  CAS  Google Scholar 

  26. Sun Y, Diaz-Arias AA, Weber KT. 1994. Angiotensin-Converting enzyme, bradykinin and angiotensin II receptor binding in rat skin, tendon and heart valves: an in vitro quantitative autoradiographic study. J Lab Clin Med 123:372–377.

    PubMed  CAS  Google Scholar 

  27. Katwa LC, Campbell SE, Tyagi SC, Lee SJ, Cicila GT, Weber KT. 1997. Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 29:1375–1386.

    Article  PubMed  CAS  Google Scholar 

  28. Campbell SE, Katwa LC. 1997. Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958.

    Article  PubMed  CAS  Google Scholar 

  29. Sun Y, Zhang J, Zhang JQ, Weber KT. 2001. Renin expression at sites of repair in the infarcted rat heart. J Mol Cell Cardiol 33:995–1003.

    Article  PubMed  CAS  Google Scholar 

  30. Passier RC, Smits JF, Verluyten MJ, Daemen MJ. 1996. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am J Physiol 271:H1040–H1048.

    PubMed  CAS  Google Scholar 

  31. Ou R, Sun Y, Ganjam VK, Weber KT. 1996. In situ production of angiotensin II by fibrosed rat pericardium. J Mol Cell Cardiol 28:1319–1327.

    Article  PubMed  CAS  Google Scholar 

  32. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. 1993. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 25:1369–1380.

    Article  PubMed  CAS  Google Scholar 

  33. Sun Y, Zhang JQ, Zhang J, Ramires FJA. 1998. Angiotensin II, transforming growth factor-β1 and repair in the infarcted heart. J Mol Cell Cardiol 30:1559–1569.

    Article  PubMed  CAS  Google Scholar 

  34. Katwa LC, Sun Y, Campbell SE, Tyagi SC, Dhalla AK, Kandala JC, Weber KT. 1998. Pouch tissue and angiotensin peptide generation. J Mol Cell Cardiol 30:1401–1413.

    Article  PubMed  CAS  Google Scholar 

  35. van Krimpen C, Schoemaker RG, Cleutjens JPM, Smits JFM, Struyker-Boudier HAJ, Bosman FT, Daemen MJAP. 1991. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 86(Suppl 1):149–155.

    PubMed  Google Scholar 

  36. Smits JFM, van Krimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772–778.

    PubMed  CAS  Google Scholar 

  37. Jugdutt BI, Amy RWM. 1986. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102.

    Article  PubMed  CAS  Google Scholar 

  38. Sun Y, Weber KT. 1996. Angiotensin-Converting enzyme and wound healing in diverse tissues of the rat. J Lab Clin Med 127:94–101.

    Article  PubMed  CAS  Google Scholar 

  39. Willems IEMG, Havenith MG, De Mey JGR, Daemen MJAP. 1994. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875.

    PubMed  CAS  Google Scholar 

  40. Sun Y, Weber KT 2000. Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256.

    Google Scholar 

  41. Lefroy DC, Wharton J, Crake T, Knock GA, Rutherford RAD, Suzuki T, Morgan K, Polak JM, Poole-Wilson PA. 1996. Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 28:429–440.

    Article  PubMed  CAS  Google Scholar 

  42. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM. 1999. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678.

    Article  PubMed  CAS  Google Scholar 

  43. Deten A, Holzl A, Leicht M, Barth W, Zimmer HG. 2001. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207.

    Article  PubMed  CAS  Google Scholar 

  44. Kalkman EA, van Haren P, Saxena PR, Schoemaker RG. 1997. Regionally different vascular response to vasoactive substances in the remodelled infarcted rat heart; aberrant vasculature in the infarct scar. J Mol Cell Cardiol 29:1487–1497.

    Article  PubMed  CAS  Google Scholar 

  45. Sappino AP, Schürch W, Gabbiani G. 1990. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161.

    PubMed  CAS  Google Scholar 

  46. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. 1972. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135:719–734.

    Article  PubMed  CAS  Google Scholar 

  47. Appleton I, Tomlinson A, Colville-Nash PR, Willoughby DA. 1993. Temporal and spatial immunolo-calization of cytokines in murine chronic granulomatous tissue. Implications for their role in tissue development and repair process. Lab Invest 69:405–414.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weber, K.T. (2003). Infarct Scar. Living Tissue. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics