Skip to main content

Modulators of Myofibrillar Function: Implications in Myocardial Failure

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 118 Accesses

Abstract

In this study, the contribution of key myofibrillar contractile elements in myocardial failure was investigated. Specifically, we assessed the mechanical implications of myosin isoform shifting, troponin T isoform shifting, and troponin I phosphorylation by protein kinase A. The two cardiac myosin isoforms have distinct functional differences which appear to be preserved across mammalian species. V1 cardiac myosin translocates actin filaments 2–3 times faster than V3 myosin but only generates one half the force. Calculated power estimates for the cardiac myosin isoforms are similar. The two adult beef troponin T isoforms have compositional similarities when compared to the two human isoforms differentially expressed in the transition to myocardial failure. Using the in vitro motility assay, no functional differences were elicited between the two isoforms in terms of unloaded shortening, isometric force, calcium sensitivity, or cooperative activation. Lastly, protein kinase A phosphorylation of troponin I resulted in a large increase in the calcium sensitive activation of the thin filament with no change in maximal activation. These results are interpreted in the context of a molecular model of contractile protein function and applied to evolving concepts of the role of the myofibril in myocardial failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert NR, Gordon MS. 1962. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 202:940–946.

    PubMed  CAS  Google Scholar 

  2. Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SWJ, Allen PD. 1988. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385.

    Article  PubMed  CAS  Google Scholar 

  3. Alousi AA, Grant AM, Etzler JR, Cofer BR, Van dB, Melvin D. 1990. Reduced cardiac myofibrillar Mg-ATPase activity without changes in myosin isozymes in patients with end-stage heart failure. Mol Cell Biochem 96:79–88.

    Article  PubMed  CAS  Google Scholar 

  4. Solaro RJ,Van EJ. 1996. Altered interactions among thin filament proteins modulate cardiac function. J Mol Cell Cardiol 28:217–230.

    Article  PubMed  CAS  Google Scholar 

  5. VanBuren P, Harris DE, Alpert NR, Warshaw DM. 1995. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res 77:439–444.

    Article  PubMed  CAS  Google Scholar 

  6. Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, Le Winter MM. 1998. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation 98:2919–2929.

    Article  PubMed  CAS  Google Scholar 

  7. Miyata S, Minobe W, Bristow MR, Leinwand LA. 2000. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390.

    Article  PubMed  CAS  Google Scholar 

  8. Mercadier JJ, Bouveret P, Gorza L, Schiaffino S, Clark WA, Zak R, Swynghedauw B, Schwartz K. 1983. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 53:52–62.

    Article  PubMed  CAS  Google Scholar 

  9. Hoffmann U, Axmann C, Grisk A. 1986. Myosin isoenzymes in normal and hypertrophied human hearts. Biomed Biochim Acta 45:985–996.

    PubMed  CAS  Google Scholar 

  10. Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC. 1997. Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 29:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  11. Rarick HM, Opgenorth TJ, von GT, Wu-Wong JR, Solaro RJ. 1996. An essential myosin light chain peptide induces supramaximal stimulation of cardiac myofibrillar ATPase activity. J Biol Chem 271:27039–27043.

    Article  PubMed  CAS  Google Scholar 

  12. Chen Z, Higashiyama A, Yaku H, Bell S, Fabian J, Watkins MW, Schneider DJ, Maughan DW, Le Winter MM. 1997. Altered expression of troponin T isoforms in mild left ventricular hypertrophy in the rabbit. J Mol Cell Cardiol 29:2345–2354.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. 1992. Troponin T isoform expression in the normal and failing human left ventricle: a correlation with myofibrillar ATPase activity. Basic Res Cardiol 87 Suppl 1:117–27:117-127.

    Google Scholar 

  14. Missov E, Calzolari C, Pau B. 1997. Circulating cardiac troponin I in severe congestive heart failure. Circulation 96:2953–2958.

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen TT, Hayes E, Mulieri LA, Leavitt BJ, ter Keurs H, Alpert NR, Warshaw DM. 1996. Maximal actomyosin ATPase activity and in vitro myosin motility are unaltered in human mitral regurgitation heart failure. Circ Res 79:222–226.

    Article  PubMed  CAS  Google Scholar 

  16. Margossian SS, Lowey S. 1982. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85 Pt B:55-71:55–71.

    Google Scholar 

  17. Pardee JD, Spudich JA. 1982. Purification of muscle actin. Methods Enzymol 85 Pt B:164-81:164–181.

    Google Scholar 

  18. VanBuren P, Palmiter KA, Warshaw DM. 1999. Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sci U S A 96:12488–12493.

    Article  PubMed  CAS  Google Scholar 

  19. VanBuren P, Alix SL, Gorga JA, Begin KJ, Le Winter MM, Alpert NR. 2002. Cardiac Troponin T Isoforms Demonstrate Similar Effects on Mechanical Performance in a Regulated Contractile System. Am J Physiol Heart Circ Physiol, 282:H1665–1671.

    PubMed  CAS  Google Scholar 

  20. Homsher E, Kim B, Bobkova A, Tobacman LS. 1996. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70:1881–1892.

    Article  PubMed  CAS  Google Scholar 

  21. Karczewski P, Bartel S, Krause EG. 1990. Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts. Biochem J 266:115–122.

    PubMed  CAS  Google Scholar 

  22. Hill AV 1938. The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B 126:136–195.

    Google Scholar 

  23. Woledge RC, Curtin NA, Homsher E. 1985. Mechanics of contraction. In Energetic Aspects of Muscle Contraction. Academic Press, London. 27–117.

    Google Scholar 

  24. Alpert NR, Mulieri LA. 1982. Myocardial adaptation to stress from the viewpoint of evolution and development. In Basic Biology of Muscle: A Comparative Approach. Twarog BM, Levine RJC, Dewey MM, editors. Raven Press, New York. 173–88.

    Google Scholar 

  25. Palmiter KA,Tyska MJ, Dupuis DE, Alpert NR, Warshaw DM. 1999. Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol (Lond) 519 Pt 3:669–678.

    Article  Google Scholar 

  26. Siemankowski RF, Wiseman MO, White HD. 1985. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci USA 82:658–662.

    Article  PubMed  CAS  Google Scholar 

  27. Harris PE, Work SS, Wright RK, Alpert NR, Warshaw DM. 1994. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro. J Muscle Res Cell Motil 15:11–19.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. 1991. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69:1226–1233.

    Article  PubMed  CAS  Google Scholar 

  29. Jin JP, Lin JJ. 1988. Rapid purification of mammalian cardiac troponin T and its isoform switching in rat hearts during development. J Biol Chem 263:7309–7315.

    PubMed  CAS  Google Scholar 

  30. Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK. 1995. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 76:681–686.

    Article  PubMed  CAS  Google Scholar 

  31. Geeves MA, Lehrer SS. 1994. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J 67:273–282.

    Article  PubMed  CAS  Google Scholar 

  32. Saggin L, Ausoni S, Gorza L, Sartore S, Schiaffino S. 1988. Troponin T switching in the developing rat heart. J Biol Chem 263:18488–18492.

    PubMed  CAS  Google Scholar 

  33. Jin JP. 1996. Alternative RNA splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in developing cardiac and skeletal muscles. Biochem Biophys Res Commun 225:883–889.

    Article  PubMed  CAS  Google Scholar 

  34. Perry SV. 1998. Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19:575–602.

    Article  PubMed  CAS  Google Scholar 

  35. Noland TAJ, Kuo JF. 1992. Protein kinase C phosphorylation of cardiac troponin T decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem J 288:123–129.

    PubMed  CAS  Google Scholar 

  36. Tobacman LS, Lin D, Butters C, Landis C, Back N, Pavlov D, Homsher E. 1999. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy. J Biol Chem 274:28363–28370.

    Article  PubMed  CAS  Google Scholar 

  37. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. 1999. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest 104:469–481.

    Article  PubMed  CAS  Google Scholar 

  38. Szczesna D, Zhang R, Zhao J, Jones M, Guzman G, Potter JD. 2000. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J Biol Chem 275:624–630.

    Article  PubMed  CAS  Google Scholar 

  39. Lin D, Bobkova A, Homsher E, Tobacman LS. 1996. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest 97:2842–2848.

    Article  PubMed  CAS  Google Scholar 

  40. Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM. 1996. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest 98:167–176.

    Article  PubMed  CAS  Google Scholar 

  41. Wattanapermpool J, Guo X, Solaro RJ. 1995. The unique amino-terminal peptide of cardiac troponin I regulates myofibrillar activity only when it is phosphorylated. J Mol Cell Cardiol 27:1383–1391.

    Article  PubMed  CAS  Google Scholar 

  42. Strang KT, Sweitzer NK, Greaser ML, Moss RL. 1994. Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res 74:542–549.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang R, Zhao J, Mandveno A, Potter JD. 1995. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res 76:1028–1035.

    Article  PubMed  CAS  Google Scholar 

  44. Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ. 1982. The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter VanBuren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

VanBuren, P., Hünlich, M., Fishbaugher, D., Noguchi, T. (2003). Modulators of Myofibrillar Function: Implications in Myocardial Failure. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics