Skip to main content

Annexins: Roles in the Regulation of Ca2+ Handling Proteins During Heart Failure

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

  • 120 Accesses

Abstract

Annexins are a family of 13 proteins known to bind phospholipids in a Ca2+-dependent way (1,2). They share a similar structure characterized by a conserved exterminai domain and a variable N-terminal domain. They are thought to participate in a variety of membrane-related events such as exocytosis, endocytosis, binding to cytoskeletal proteins but also to regulate protein activities. In the myocardium, annexin VI is the most abundant and has been localized in various cell types including myocytes. It has been involved in the regulation of Ca2+ handling proteins and surexpression or knockout of the annexin VI gene leads to changes in Ca2+ homeostasis and contractility. Expression and localization of annexin VI is either faintly or not modified during heart failure. Annexin V is mainly localized in the sarcolemma and T-tubules of cardiomyocytes and in endothelial cells. In the failing heart, expression of annexin V is increased and localization becomes heterogenous leading to myocytes devoided of annexin V and interstitial tissue strongly labelled. Annexin VII is known as a skeletal muscle annexin but is also expressed in the heart. It is the third annexin which could be related to regulation of Ca2+ handling proteins because the knockout of the annexin VII gene shows a decrease in the force-frequency relationship in adult cardiomyocytes. The major endothelial annexin is annexin II which is involved in membrane trafficking, collagen binding and plasminogen activation. It is absent from myocytes. During heart failure, the increase in annexin II might play a role in the extracellular matrix remodeling. From these studies, it is tempting to speculate that annexins, at least annexins V, VI and VII, might play a role in the regulation of Ca2+ handling proteins during heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raynal P, Pollard HB. 1994. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93.

    Article  PubMed  CAS  Google Scholar 

  2. Gerke V, Moss SE. 1997. Annexins and membrane dynamics. Biochim Biophys Acta 1357:129–154.

    Article  PubMed  CAS  Google Scholar 

  3. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376.

    Article  PubMed  CAS  Google Scholar 

  4. Valdivia HH. 2001. Cardiac ryanodine receptors and accessory proteins: augmented expression does not necessarily mean big function. Circ Res 88:134–136.

    Article  PubMed  CAS  Google Scholar 

  5. Meyers MB, Puri TS, Chien AJ, Gao T, Hsu PH, Hosey MM, Fishman GI. 1998. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J Biol Chem 273:18930–18935.

    Article  PubMed  CAS  Google Scholar 

  6. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR. 1994. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523.

    Article  PubMed  CAS  Google Scholar 

  7. Prestle J, Janssen PM, Janssen AP, Zeitz O, Lehnart SE, Bruce L, Smith GL, Hasenfuss G. 2001. Over-expression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptormediated Ca(2+) leak from the sarcoplasmic reticulum and increases contractility. Circ Res 88:188–194.

    Article  PubMed  CAS  Google Scholar 

  8. Lokuta AJ, Meyers MB, Sander PR, Fishman GI, Valdivia HH. 1997. Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem 272:25333–25338.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. 1997. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397.

    Article  PubMed  CAS  Google Scholar 

  10. Kirchhefer U, Neumann J, Baba HA, Begrow F, Kobayashi YM, Reinke U, Schmitz W, Jones LR. 2001. Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 276:4142–4149.

    Article  PubMed  CAS  Google Scholar 

  11. Trouve P, Legot S, Belikova I, Marotte F, Benevolensky D, Russo-Marie F, Samuel JL, Charlemagne D. 1999. Localization and quantitation of cardiac annexins II, V, and VI in hypertensive guinea pigs. Am J Physiol 276:H1159–H1166.

    PubMed  CAS  Google Scholar 

  12. Benevolensky D, Belikova Y, Mohammadzadeh R, Trouve P, Marotte F, Russo-Marie F, Samuel JL, Charlemagne D. 2000. Expression and localization of the annexins II, V, and VI in myocardium from patients with end-stage heart failure. Lab Invest 80:123–133.

    Article  PubMed  CAS  Google Scholar 

  13. Yano M, Ono K, Ohkusa T, Suetsugu M, Kohno M, Hisaoka T, Kobayashi S, Hisamatsu Y, Yamamoto T, Noguchi N, Takasawa S, Okamoto H, Matsuzaki M. 2000. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation 102:2131–2136.

    Article  PubMed  CAS  Google Scholar 

  14. Raynal P, Kuijpers G, Rojas E, Pollard HB. 1996. A rise in nuclear calcium translocates annexins IV and V to the nuclear envelope. FEBS Lett 392:263–268.

    Article  PubMed  CAS  Google Scholar 

  15. Trotter PJ, Orchard MA, Walker JH. 1995. Ca2+ concentration during binding determines the manner in which annexin V binds to membranes. Biochem J 308:591–598.

    PubMed  CAS  Google Scholar 

  16. Babiychuk EB, Draeger A. 2000. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol 150:1113–1124.

    Article  PubMed  CAS  Google Scholar 

  17. Raynal P, Hullin F, Ragab-Thomas JM, Fauvel J, Chap H. 1993. Annexin 5 as a potential regulator of annexin 1 phosphorylation by protein kinase C. In vitro inhibition compared with quantitative data on annexin distribution in human endothelial cells. Biochem J 292:759–765.

    PubMed  CAS  Google Scholar 

  18. Schelling JR, Gentry DJ, Dubyak GR. 1996. Annexin II inhibition of G protein-regulated inositol trisphosphate formation in rat aortic smooth muscle. Am J Physiol 270:F682–F690.

    PubMed  CAS  Google Scholar 

  19. Bers DM. 2002. Cardiac excitation-contraction coupling. Nature 415:198–205.

    Article  PubMed  CAS  Google Scholar 

  20. Waisman DM. 1995. Annexin II tetramer: structure and function. Mol Cell Biochem 149-150:301–322.

    Article  Google Scholar 

  21. Hajjar KA, Guevara CA, Lev E, Dowling K, Chacko J. 1996. Interaction of the fibrinolytic receptor, annexin II, with the endothelial cell surface. Essential role of endonexin repeat 2. J Biol Chem 271:21652–21659.

    Article  PubMed  CAS  Google Scholar 

  22. Nilius B, Gerke V, Prenen J, Szucs G, Heinke S, Weber K, Droogmans G. 1996. Annexin II modulates volume-activated chloride currents in vascular endothelial cells. J Biol Chem 271:30631–30636.

    Article  PubMed  CAS  Google Scholar 

  23. Song G, Campos B, Wagoner LE, Dedman JR, Walsh RA. 1998. Altered cardiac annexin mRNA and protein levels in the left ventricle of patients with end-stage heart failure. J Mol Cell Cardiol 30:443–451.

    Article  PubMed  CAS  Google Scholar 

  24. Jans SW, de Jong YF, Reutelingsperger CP, van der Vusse GJ, van Bilsen M. 1998. Differential expression and localization of annexin V in cardiac myocytes during growth and hypertrophy. Mol Cell Biochem 178:229–236.

    Article  PubMed  CAS  Google Scholar 

  25. Chan HC, Kaetzel MA, Gotter AL, Dedman JR, Nelson DJ. 1994. Annexin IV inhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation. J Biol Chem 269:32464–32468.

    PubMed  CAS  Google Scholar 

  26. Matteo RG, Moravec CS. 2000. Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart. Cardiovasc Res 45:961–970.

    Article  PubMed  CAS  Google Scholar 

  27. Demange P,Voges D, Benz J, Liemann S, Gottig P, Berendes R, Burger A, Huber R. 1994. Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci 19:272–276.

    Article  PubMed  CAS  Google Scholar 

  28. Arispe N, Rojas E, Genge BR, Wu LN, Wuthier RE. 1996. Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers. Biophys J 71:1764–1775.

    Article  PubMed  CAS  Google Scholar 

  29. Barwise JL, Walker JH. 1996. Annexins II, IV, V and VI relocate in response to rises in intracellular calcium in human foreskin fibroblasts. J Cell Sci 109:247–255.

    PubMed  CAS  Google Scholar 

  30. Dubois T, Mira JP, Feliers D, Solito E, Russo-Marie F, Oudinet JP. 1998. Annexin V inhibits protein kinase C activity via a mechanism of phospholipid sequestration. Biochem J 330:1277–1282.

    PubMed  CAS  Google Scholar 

  31. Mira JP, Dubois T, Oudinet JP, Lukowski S, Russo-Marie F, Geny B. 1997. Inhibition of cytosolic phospholipase A2 by annexin V in differentiated permeabilized HL-60 cells. Evidence of crucial importance of domain I type II Ca2+-binding site in the mechanism of inhibition. J Biol Chem 272:10474–10482.

    Article  PubMed  CAS  Google Scholar 

  32. van Heerde WL, Sakariassen KS, Hemker HC, Sixma JJ, Reutelingsperger CP, de Groot PG. 1994. Annexin V inhibits the procoagulant activity of matrices of TNF-stimulated endothelium under blood flow conditions. Arterioscler Thromb 14:824–830.

    Article  Google Scholar 

  33. Gidon-Jeangirard C, Solito E, Hofmann A, Russo-Marie F, Freyssinet JM, Martinez MC. 1999. Annexin V counteracts apoptosis while inducing Ca(2+) influx in human lymphocytic T cells. Biochem Biophys Res Commun 265:709–715.

    Article  PubMed  CAS  Google Scholar 

  34. Giambanco I, Verzini M, Donato R. 1993. Annexins V and VI in rat tissues during post-natal development: immunochemical measurements. Biochem Biophys Res Commun 196:1221–1226.

    Article  PubMed  CAS  Google Scholar 

  35. Doubell AF, Lazure C, Charbonneau C, Thibault G. 1993. Identification and immunolocalisation of annexins V and VI, the major cardiac annexins, in rat heart. Cardiovasc Res 27:1359–1367.

    Article  PubMed  CAS  Google Scholar 

  36. Luckcuck T, Trotter PJ, Walker JH. 1997. Localization of annexin V in the adult and neonatal heart. Biochem Biophys Res Commun 238:622–628.

    Article  PubMed  CAS  Google Scholar 

  37. Wang L, Rahman MM, Iida H, Inai T, Kawabata S, Iwanaga S, Shibata Y. 1995. Annexin V is localized in association with Z-line of rat cardiac myocytes. Cardiovasc Res 30:363–371.

    PubMed  CAS  Google Scholar 

  38. Jans SW, van Bilsen M, Reutelingsperger CP, Borgers M, de Jong YF, van derVusse GJ. 1995. Annexin V in the adult rat heart: isolation, localization and quantitation. J Mol Cell Cardiol 27:335–348.

    Article  PubMed  CAS  Google Scholar 

  39. Doubell AF, Bester AJ, Thibault G. 1991. Annexins V and VI: major calcium-dependent atrial secretory granule-binding proteins. Hypertension 18:648–656.

    Article  PubMed  CAS  Google Scholar 

  40. Grewal T, Heeren J, Mewawala D, Schnitgerhans T, Wendt D, Salomon G, Enrich C, Beisiegel U, Jackie S. 2000. Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J Biol Chem 275:33806–33813. [Record as supplied by publisher].

    Article  PubMed  CAS  Google Scholar 

  41. Babiychuk EB, Palstra RJ, Schaller J, Kampfer U, Draeger A. 1999. Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J Biol Chem 274:35191–35195.

    Article  PubMed  CAS  Google Scholar 

  42. Diaz-Munoz M, Hamilton SL, Kaetzel MA, Hazarika P, Dedman JR. 1990. Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem 265:15894–15899.

    PubMed  CAS  Google Scholar 

  43. Rojas E, Arispe N, Haigler HT, Burns AL, Pollard HB. 1992. Identification of annexins as calcium channels in biological membranes. Bone Miner 17:214–218.

    Article  PubMed  CAS  Google Scholar 

  44. Gunteski-Hamblin AM, Song G, Walsh RA, Frenzke M, Boivin GP, Dorn GW, 2nd, Kaetzel MA, Horseman ND, Dedman JR. 1996. Annexin VI overexpression targeted to heart alters cardiomyocyte function in transgenic mice. Am J Physiol 270:H1091–H1100.

    PubMed  CAS  Google Scholar 

  45. Sobota A, Cusinato F, Luciani S. 1990. Identification and purification of calpactins from cardiac muscle and their effect on Na+/Ca2+ exchange activity. Biochem Biophys Res Commun 172:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  46. Song G, Harding SE, Duchen MR, Tunwell R, O’gara P, Hawkins TE, Moss SE. 2002. Altered mechanical properties and intracellular calcium signaling in cardiomyocytes from annexin 6 null-mutant mice. Faseb J 12:12.

    Google Scholar 

  47. Pollard HB, Rojas E, Pastor RW, Rojas EM, Guy HR, Burns AL. 1991. Synexin: molecular mechanism of calcium-dependent membrane fusion and voltage-dependent calcium-channel activity. Evidence in support of the “hydrophobic bridge hypothesis” for exocytotic membrane fusion. Ann N Y Acad Sci 635:328–351.

    Article  PubMed  CAS  Google Scholar 

  48. Caohuy H, Srivastava M, Pollard HB. 1996. Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc Natl Acad Sci USA 93:10797–10802.

    Article  PubMed  CAS  Google Scholar 

  49. Caohuy H, Pollard HB. 2001. Activation of annexin 7 by protein kinase C in vitro and in vivo. J Biol Chem 276:12813–12821.

    Article  PubMed  CAS  Google Scholar 

  50. Selbert S, Fischer P, Pongratz D, Stewart M, Noegel AA. 1995. Expression and localization of annexin VII (synexin) in muscle cells. J Cell Sci 108:85–95.

    PubMed  CAS  Google Scholar 

  51. Clemen CS, Hofmann A, Zamparelli C, Noegel AA. 1999. Expression and localisation of annexin VII (synexin) isoforms in differentiating myoblasts. J Muscle Res Cell Motil 20:669–679.

    Article  PubMed  CAS  Google Scholar 

  52. Selbert S, Fischer P, Menke A, Jockusch H, Pongratz D, Noegel AA. 1996. Annexin VII relocalization as a result of dystrophin deficiency. Exp Cell Res 222:199–208.

    Article  PubMed  CAS  Google Scholar 

  53. Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H, Miller G, Pichel J, Westphal H, Mears D, Rojas E, Pollard HB. 1999. Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/-) knockout mouse. Proc Natl Acad Sci USA 96:13783–13788.

    Article  PubMed  CAS  Google Scholar 

  54. Herr C, Smyth N, Ullrich S, Yun F, Sasse P, Hescheler J, Fleischmann B, Lasek K, Brixius K, Schwinger RH, Fassler R, Schroder R, Noegel AA. 2001. Loss of annexin A7 leads to alterations in frequencyinduced shortening of isolated murine cardiomyocytes. Mol Cell Biol 21:4119–4128.

    Article  PubMed  CAS  Google Scholar 

  55. Brownawell AM, Creutz CE. 1997. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J Biol Chem 272:22182–22190.

    Article  PubMed  CAS  Google Scholar 

  56. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI. 1995. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 270:26411–26418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danièle Charlemagne PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Camors, E., Belikova, I., Monceau, V., Charlemagne, D. (2003). Annexins: Roles in the Regulation of Ca2+ Handling Proteins During Heart Failure. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics