Skip to main content

Calreticulin-Mediated Nuclear Protein Export

  • Chapter
Calreticulin

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The role of calreticulin (CRT) as a molecular chaperone that functions in the endoplasmic reticulum (ER) is well established. This involves transient binding of CRT to hydrophobic residues and carbohydrate chains in polypeptides undergoing folding reactions in the lumen of the ER. The issue of CRT distribution and function outside of the ER, though controversial for several years, has now been addressed by rigorous biochemical fractionation and cell biological analysis. Cytosolic CRT, which refers to the non-ER form of the protein that shuttles between the cytoplasm and nucleus, can function as a receptor that mediates nuclear export of the glucocorticoid receptor (GR). The signal recognized by CRT is contained within the DNA binding domain (DBD) of GR. In this chapter, we introduce the topic of nuclear export and summarize the characterization of cytosolic CRT as an export receptor. We also review the evidence that the DBD functions as a signal for export of GR. The DBD is likely to function as the export signal for other members of the nuclear receptor (NR) superfamily, which is the largest family of transcription factors in higher eukaryotes. Our working model is that the non-ER form of CRT contributes to the regulation of multiple cellular pathways through a nuclear export-based mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.

    Article  PubMed  CAS  Google Scholar 

  2. Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999; 99:677–690.

    Article  PubMed  CAS  Google Scholar 

  3. Stoffler D, Fahrenkrog B, Aebi U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol 1999; 11:391–401.

    Article  PubMed  CAS  Google Scholar 

  4. Wente SR. Gatekeepers of the nucleus. Science 2000; 288:1374–1377.

    Article  PubMed  CAS  Google Scholar 

  5. Vasu SK, Forbes DJ. Nuclear pores and nuclear assembly. Curr Opin Cell Biol 2001; 13:363–375.

    Article  PubMed  CAS  Google Scholar 

  6. Fischer U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82:475–83.

    Article  PubMed  CAS  Google Scholar 

  7. Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82:463–473.

    Article  PubMed  CAS  Google Scholar 

  8. Fornerod M, van Deursen J, van Baal S et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 1997; 16:807–816.

    Google Scholar 

  9. Pemberton LF, Blobel G, Rosenblum JS. Transport routes through the nuclear pore complex. Curr Opin Cell Biol 1998; 10:392–399.

    Article  PubMed  CAS  Google Scholar 

  10. Fornerod M, Ohno M, Yoshida M et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90:1051–60.

    Article  PubMed  CAS  Google Scholar 

  11. Stade K, Ford CS, Guthrie C et al. Exportin 1 (Crmlp) is an essential nuclear export factor. Cell 1997; 90:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  12. Steggerda SM, Paschal BP. Regulation of nuclear import and export by the GTPase Ran. Int Rev Cytol 2002; 217:41–91.

    Article  PubMed  CAS  Google Scholar 

  13. Klemm JD, Beals CR, Crabtree GR. Rapid targeting of nuclear proteins to the cytoplasm. Curr Biol 1997; 7:638–644.

    Article  PubMed  CAS  Google Scholar 

  14. Kehlenbach RH, Dickmanns A, Gerace L. Nucleocytoplasmic shuttling factors including Ran and Crml mediate nuclear export of NFAT in vitro. J Cell Biol 1998; 141:863–874.

    Article  PubMed  CAS  Google Scholar 

  15. Roth J, Dobbelstein M, Freedman DA et al. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17:554–564.

    Article  PubMed  CAS  Google Scholar 

  16. Stommel JM, Marchenko ND, Jimenez GS et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 1999; 18:1660–1672.

    Article  PubMed  CAS  Google Scholar 

  17. Wolff B, Sanglier JJ, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 1997; 4:139–147.

    Article  PubMed  CAS  Google Scholar 

  18. Holaska JM, Paschal BM. A cytosolic activity distinct from Crml mediates nuclear export of protein kinase inhibitor in permeabilized cells. Proc Natl Acad Sci USA 1998; 95:14739–14744.

    Article  PubMed  CAS  Google Scholar 

  19. Adam SA, Sterne-Marr RE, Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 1990; 111:807–816.

    Article  PubMed  CAS  Google Scholar 

  20. Holaska JM, Black BE, Love DC et al. Calreticulin is a receptor for nuclear export. J Cell Biol 2001; 152:127–140.

    Article  PubMed  CAS  Google Scholar 

  21. Osrwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 1974; 249:974–979.

    Google Scholar 

  22. Michalak M, Burns K, Andrin C et al. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 1996; 271:29436–29445.

    Article  PubMed  CAS  Google Scholar 

  23. Jethmalani SM, Henle KJ, Gazitt Y et al. Intracellular distribution of heat-induced stress glycoproteins. J Cell Biochem 1997; 66:98–111.

    Article  PubMed  CAS  Google Scholar 

  24. Roderick HL, Campbell AK, Llewellyn DH. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett 1997; 405:181–185.

    Article  PubMed  CAS  Google Scholar 

  25. Burns K, Duggan B, Atkinson EA et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 1994; 367:476–480.

    Article  PubMed  CAS  Google Scholar 

  26. Dedhar S, Rennie PS, Shago M et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994; 367:480–483.

    Article  PubMed  CAS  Google Scholar 

  27. Wheeler DG, Horsford J, Michalak M et al. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res 1995; 23:3268–3274.

    Article  PubMed  CAS  Google Scholar 

  28. Büchner J. Hsp90 & Co.-a holding for folding. Trends Biochem Sci 1999; 24:136–141.

    Article  PubMed  Google Scholar 

  29. Mesaeli N, Nakamura K, Zvaritch E et al. Calreticulin is essential for cardiac development. J Cell Biol 1999; 144:857–868.

    Article  PubMed  CAS  Google Scholar 

  30. Black BE, Holaska JM, Rastinejad F et al. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol 2001; 11:1749–1758.

    Article  PubMed  CAS  Google Scholar 

  31. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240:889–895.

    Article  PubMed  CAS  Google Scholar 

  32. Luisi BF, Xu WX, Orwinowski Z et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352:497–505.

    Article  PubMed  CAS  Google Scholar 

  33. Madan AP, DeFranco DB. Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc Natl Acad Sci USA 1993; 90:3588–3592.

    Article  PubMed  CAS  Google Scholar 

  34. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP Al: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83:415–422.

    Article  PubMed  CAS  Google Scholar 

  35. Singh NK, Atreya CD, Nakhasi HL. Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci USA 1994; 91:12770–12774.

    Article  PubMed  CAS  Google Scholar 

  36. Holaska JM, Black BE, Rastinejad FR et al. Ca2+-dependent nuclear export mediated by calreticulin. Mol Cell Biol 2002; 22:6286–6297.

    Article  PubMed  CAS  Google Scholar 

  37. Vassilakos A, Michalak M, Lehrman MA et al. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 1998; 37:3480–3490.

    Article  PubMed  CAS  Google Scholar 

  38. Komeili A, O’Shea EK. Nuclear transport and transcription. Curr Opin Cell Biol 2000; 12:355–360.

    Article  PubMed  CAS  Google Scholar 

  39. Gottlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone action. J Mol Med 1998; 76:480–489.

    Article  PubMed  CAS  Google Scholar 

  40. Karin M, Chang L. AP-1/glucocorticoid receptor crosstalk taken to a higher level. J Endocrinol 2001; 169:447–451.

    Article  PubMed  CAS  Google Scholar 

  41. Liu J, DeFranco DB. Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM 1-directed nuclear export pathway. Mol Endocrinol 2000; 14:40–51.

    Article  PubMed  Google Scholar 

  42. Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 1998; 18:7288–7293.

    PubMed  CAS  Google Scholar 

  43. Rodriguez MS, Thompson J, Hay RT et al. Nuclear retention of IkB-a protects it from signal-induced degradation and inhibits nuclear factor kB transcriptional activation. J Biol Chem 1999; 274:9108–9115.

    Article  PubMed  CAS  Google Scholar 

  44. Falkenstein E, Tillmann HC, Christ M et al. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52:513–555.

    PubMed  CAS  Google Scholar 

  45. Manolagas SC, Kousteni S. Perspective: nonreproductive sites of action of reproductive hormones. Endo 2001; 142:2200–2204.

    Article  CAS  Google Scholar 

  46. Migliaccio A, Castoria G, Di Domenico M et al. Steroid-induced androgen receptor-oestradiol receptor b-Src complex triggers prostate cancer cell progression. EMBO J 2000; 19:5406–5417.

    Article  PubMed  CAS  Google Scholar 

  47. Simoncini T, Hafezi-Moghadam A, Brazil DP et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000; 407:538–541.

    Article  PubMed  CAS  Google Scholar 

  48. Kousteni S, Bellido T, Plotkin LI et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001; 104:719–730.

    PubMed  CAS  Google Scholar 

  49. DeFranco DB. DNA-binding domains find a surprising partner. Curr Biol 2001; 11:R1036–R1037.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Black, B.E., Paschal, B.M. (2003). Calreticulin-Mediated Nuclear Protein Export. In: Eggleton, P., Michalak, M. (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9258-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9258-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4862-7

  • Online ISBN: 978-1-4419-9258-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics