Skip to main content

Calnexin, an ER Integral Membrane Chaperone in Health and Disease

  • Chapter
Calreticulin

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 221 Accesses

Abstract

This review discusses the ER protein calnexin that is related in structure and function to calreticulin. In vivo and in vitro experiments from many laboratories have provided evidence that calnexin and calreticulin interact transiently with glycoproteins while they are folding in the ER a that this interaction is via a specific Glc1Man9GlcNAc2 glycoform. The structure of calnexin has recently been determined to 2.9Å resolution by X-ray crystallography and has a unique and remarkable structure a globular domain and an extended 140Å arm termed the P domain. The P domain recruits a member of the protein disulfide isomerase family, ERp57, that specifically catalyzes disulfide bond exchange on glycoproteins bound to calnexin. Calnexin links N-glycosylation and protein folding and forms the quality control system for glycoproteins. Mutant glycoproteins are the basis of many human protein trafficking diseases and the ER quality system is responsible for their retention in the ER and their proteolytic degradation in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chevet E, Jakob CA, Thomas DY et al. Calnexin family members as modulators of genetic diseases. Semin Cell Dev Biol 1999; 10:473–80.

    Article  PubMed  CAS  Google Scholar 

  2. Zapun A, Jakob CA, Thomas DY et al. Protein folding in a specialized compartment: the endoplasmic reticulum. Structure Fold Des 1999; 7:R173–82.

    Article  PubMed  CAS  Google Scholar 

  3. Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem 2000; 69:69–93.

    Article  PubMed  CAS  Google Scholar 

  4. Pelletier MF, Bergeron JJM, Thomas DY. Molecular chaperone systems in the endoplasmic reticulum. Chapter 8. Oxford: Oxford University Press, 2001.

    Google Scholar 

  5. Cabrai CM, Choudhury P, Liu Y et al. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem 2000; 275:25015–22.

    Article  Google Scholar 

  6. Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288:331–3.

    Article  PubMed  CAS  Google Scholar 

  7. Wada I, Rindress D, Cameron PH et al. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 1991; 266:19599–610.

    PubMed  CAS  Google Scholar 

  8. Ahluwalia N, Bergeron JJ, Wada I et al. The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J Biol Chem 1992; 267:10914–8.

    PubMed  CAS  Google Scholar 

  9. Ou WJ, Cameron PH, Thomas DY et al. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 1993; 364:771–6.

    Article  PubMed  CAS  Google Scholar 

  10. Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 1994; 91:913–7.

    Article  PubMed  CAS  Google Scholar 

  11. Zapun A, Petrescu SM, Rudd PM et al. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell 1997; 88:29–38.

    Article  PubMed  CAS  Google Scholar 

  12. Parlati F, Dignard D, Bergeron JJ et al. The calnexin homologue cnxl+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. Embo J 1995; 14:3064–72.

    PubMed  CAS  Google Scholar 

  13. Ou WJ, Bergeron JJ, Li Y et al. Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem 1995; 270:18051–9.

    Article  PubMed  CAS  Google Scholar 

  14. Ihara Y, Cohen-Doyle MF, Saito Y et al. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 1999; 4:331–41.

    Article  PubMed  CAS  Google Scholar 

  15. Schrag JD, Bergeron JJ, Li Y et al. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 2001; 8:633–44.

    Article  PubMed  CAS  Google Scholar 

  16. Vassilakos A, Michalak M, Lehrman MA et al. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 1998; 37:3480–90.

    Article  PubMed  CAS  Google Scholar 

  17. Ellgaard L, Riek R, Herrmann T et al. NMR structure of the calreticulin P-domain. Proc Natl Acad Sci USA 2001; 98:3133–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tessier DC, Dignard D, Zapun A et al. Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme. Glycobiology 2000; 10:403–12.

    Article  PubMed  CAS  Google Scholar 

  19. Oliver JD, van der Wal FJ, Bulleid NJ et al. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 1997; 275:86–8.

    Article  PubMed  CAS  Google Scholar 

  20. Oliver JD, Roderick HL, Llewellyn DH et al. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999; 10:2573–82.

    PubMed  CAS  Google Scholar 

  21. Corbett EF, Michalak KM, Oikawa K et al. The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J Biol Chem 2000; 275:27177–85.

    PubMed  CAS  Google Scholar 

  22. Frickel EM, Riek R, Jelesarov I et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002; 99:1954–9.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe D, Yamada K, Nishina Y et al. Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 1994; 269:7744–9.

    PubMed  CAS  Google Scholar 

  24. Ho SC, Rajagopalan S, Chaudhuri S. Membrane anchoring of calnexin facilitates its interaction with its targets. Mol Immunol 1999; 36:1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Hebert DN, Foellmer B, Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. Embo J 1996; 15:2961–8.

    PubMed  CAS  Google Scholar 

  26. Mesaeli N, Nakamura K, Zvaritch E et al. Calreticulin is essential for cardiac development. J Cell Biol 1999; 144:857–68.

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura K, Robertson M, Liu G et al. Complete heart block and sudden death in mice overexpressing calreticulin. J Clin Invest 2001; 107:1245–53.

    Article  PubMed  CAS  Google Scholar 

  28. Malyguine AM, Scott JE, Dawson JR. The role of calnexin in NK-target cell interaction. Immunol Lett 1998; 61:67–71.

    Article  PubMed  CAS  Google Scholar 

  29. Zuppini A, Groenendyk J, Cormack LA et al. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis. Biochemistry 2002; 41:2850–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ikawa M, Wada I, Kominami K et al. The putative chaperone calmegin is required for sperm fertility. Nature 1997; 387:607–11.

    Article  PubMed  CAS  Google Scholar 

  31. Park BJ, Lee DG, Yu JR et al. Calreticulin, a Calcium-binding Molecular chaperone, Is Required for Stress Response and Fertility in Caenorhabditis elegans. Mol Biol Cell 2001; 12:2835–45.

    PubMed  CAS  Google Scholar 

  32. Xu K, Tavernarakis N, Driscoll M. Necrotic Cell Death in C. elegans Requires the Function of Calreticulin and Regulators of Ca(2+) Release from the Endoplasmic reticulum. Neuron 2001; 31:957–71.

    Article  PubMed  CAS  Google Scholar 

  33. De Praeter CM, Gerwig GJ, Bause E et al. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 2000; 66:1744–56.

    Article  PubMed  Google Scholar 

  34. Nichols WC, Seligsohn U, Zivelin A et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93:61–70.

    Article  PubMed  CAS  Google Scholar 

  35. Dwek RA, Butters TD, Platt FM et al. Targeting glycosylation as a therapeutic approachA. Nature Reviews Drug Discovery 2002; 1:65–75.

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Bergeron JJ, Luo L et al. Effects of inefficient cleavage of the signal sequence of HIV-1 gp 120 on its association with calnexin, folding, and intracellular transport. Proc Natl Acad Sci USA 1996; 93:9606–11.

    Article  PubMed  CAS  Google Scholar 

  37. Li Y, Luo L, Thomas DY et al. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology 2000; 272:417–28.

    Article  PubMed  CAS  Google Scholar 

  38. Block TM, Lu X, Mehta AS et al. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat Med 1998; 4:610–4.

    Article  PubMed  CAS  Google Scholar 

  39. Block TM, Lu X, Mehta A et al. Role of glycan processing in hepatitis B virus envelope protein trafficking. Adv Exp Med Biol 1998; 435:207–16.

    Article  PubMed  CAS  Google Scholar 

  40. Muller-Taubenberger A, Lupas AN, Li H et al. Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. Embo J 2001; 20:6772–6782.

    Article  PubMed  CAS  Google Scholar 

  41. Fanchiotti S, Fernandez F, D’Alessio C et al. The UDP-Gk:Glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic reticu-lum stress. J Cell Biol 1998; 143:625–35.

    Article  PubMed  CAS  Google Scholar 

  42. Shahinian S, Dijkgraaf GJ, Sdicu AM et al. Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-l,6-glucan of Saccharomyces cerevisiae. Genetics 1998; 149:843–56.

    PubMed  CAS  Google Scholar 

  43. Ellis RJ, Pinheiro TJ. Medicine: danger—misfolding proteins. Nature 2002; 416:483–4.

    Article  PubMed  CAS  Google Scholar 

  44. Jakob CA, Bodmer D, Spirig U et al. Htmlp, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2001; 2:423–30.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergeron, J.J.M., Thomas, D.Y. (2003). Calnexin, an ER Integral Membrane Chaperone in Health and Disease. In: Eggleton, P., Michalak, M. (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9258-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9258-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4862-7

  • Online ISBN: 978-1-4419-9258-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics