Calreticulin pp 220-237 | Cite as

Role of Calreticulin in Leishmania Parasite Secretory Pathway and Pathogenesis

  • Alain Debrabant
  • Nancy Lee
  • Dennis M. Dwyer
  • Hira L. Nakhasi
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The trypanosomatid parasites Leishmania and Trypanosoma are the causative agents of human diseases such as leishmaniasis, Chagas disease or African sleeping sickness. Some proteins secreted by these protozoan parasites represent virulence factors and contribute to the survival of these pathogen in the human hosts. Therefore, alteration in the secretion of these proteins could result in attenuation of parasite virulence. Calreticulin is an endoplasmic reticulum chaperone protein involved in the quality control of glycoprotein folding in higher eukaryotes. Previously, we isolated and characterized a calreticulin homologue (LdCR) from Leishmania donovani, the causative agent of visceral leishmaniasis. To assess whether modulation of LdCR level in the parasite could affect the release of secretory proteins by Leishmania, we established L. donovani cell lines overexpressing LdCR or its putative N-, P-, or C-domains. In this report, we show that the secretion of secretory acid phosphatase and possibly other proteins trafficking through the secretory pathway of the parasite were affected as a result of overexpression of LdCR P- or C-domain. In addition, parasites expressing either the LdCR N- or P-domain showed significant decrease in survival inside macrophages in vitro. Taken together, these results suggest that disruption of the functions of calreticulin in Leishmania can result in an alteration of the parasite secretory pathway and also reduce its virulence in vitro.

Keywords

Attenuation Disulfide Methionine Histidine Mannose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desjeux P. Human leishmaniases: epidemiology and public health aspects. World Health Stat Q 1992; 45:267–275.PubMedGoogle Scholar
  2. 2.
    Handman E. Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 2001; 14:229–243.PubMedCrossRefGoogle Scholar
  3. 3.
    Desjeux P, Piot B, O’Neill K et al. Co-infections of leishmania/HIV in south Europe. Med Trop 2001; 61:187–193.Google Scholar
  4. 4.
    Molyneux D, Killick-Kendrick R. Morphology, ultrastructure and life cycles. In: Peters W, Killick-Kendrick R, eds. The leishmaniases in biology and medicine. London: Academic Press, 1987:121–176.Google Scholar
  5. 5.
    Alexander J, Satoskar AR, Russell DG. Leishmania species: models of intracellular parasitism. J Cell Sci 1999; 112:2993–3002.PubMedGoogle Scholar
  6. 6.
    McConville MJ, Blackwell JM. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem 1991; 266:15170–15179.PubMedGoogle Scholar
  7. 7.
    Mukkada AJ, Meade JC, Glaser TA et al. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science 1985; 229:1099–1101.PubMedCrossRefGoogle Scholar
  8. 8.
    Bahr V, Stierhof YD, Ilg T et al. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol 1993; 58:107–121.PubMedCrossRefGoogle Scholar
  9. 9.
    Cairns BR, Collard MW, Landfear SM. Deveiopmentally regulated gene from Leishmania encodes a putative membrane transport protein. Proc Natl Acad Sci USA 1989; 86:7682–7686.PubMedCrossRefGoogle Scholar
  10. 10.
    Charest H, Matlashewski G. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 1994; 14:2975–2984.PubMedGoogle Scholar
  11. 11.
    Joshi M, Dwyer DM, Nakhasi HL. Cloning and characterization of differentially expressed genes from in vitro-grown ‘amastigotes’ of Leishmania donovani. Mol Biochem Parasitol 1993; 58:345–354.PubMedCrossRefGoogle Scholar
  12. 12.
    Kidane GZ, Samaras N, Spithill TW. Cloning of deveiopmentally regulated genes from Leishmania major and expression following heat induction. J Biol Chem 1989; 264:4244–4250.PubMedGoogle Scholar
  13. 13.
    Shapira M, McEwen JG, Jaffe CL. Temperature effects on molecular processes which lead to stage differentiation in Leishmania. Embo J 1988; 7:2895–2901.PubMedGoogle Scholar
  14. 14.
    Pogue GP, Lee NS, Koul S et al. Identification of differentially expressed Leishmania donovani genes using arbitrarily primed polymerase chain reactions. Gene 1995; 165:31–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Streit JA, Donelson JE, Agey MW et al. Developmental changes in the expression of Leishmania chagasi gp63 and heat shock protein in a human macrophage cell line. Infect Immun 1996; 64:1810–1818.PubMedGoogle Scholar
  16. 16.
    Turco SJ, Sacks DL. Expression of a stage-specific lipophosphoglycan in Leishmania major amastigotes. Mol Biochem Parasitol 1991; 45:91–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Duncan R, Alvarez R, Jaffe CL et al. Early response gene expression during differentiation of cultured Leishmania donovani. Parasitol Res 2001; 87:897–906.PubMedGoogle Scholar
  18. 18.
    Dwyer DM, Gottlieb M. The surface membrane chemistry of Leishmania: its possible role in parasite sequestration and survival. J Cell Biochem 1983; 23:35–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider P, Bordier C, Etges R. Membrane proteins and enzymes of Leishmania. Subcell Biochem 1992; 18:39–72.PubMedGoogle Scholar
  20. 20.
    Ferguson MA. The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 1997; 352:1295–1302.PubMedCrossRefGoogle Scholar
  21. 21.
    Bates PA, Dwyer DM. Biosynthesis and secretion of acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol 1987; 26:289–296.PubMedCrossRefGoogle Scholar
  22. 22.
    Shakarian AM, Dwyer DM. The Ld Cht1 gene encodes the secretory chitinase of the human pathogen Leishmania donovani. Gene 1998; 208:315–322.PubMedCrossRefGoogle Scholar
  23. 23.
    Webb JR, Campos-Neto A, Ovendale PJ et al. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun 1998; 66:3279–3289.PubMedGoogle Scholar
  24. 24.
    Labriola C, Cazzulo JJ, Parodi AJ. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins. Mol Biol Cell 1999; 10:1381–1394.PubMedGoogle Scholar
  25. 25.
    Bangs JD. Surface coats and secretory trafficking in African trypanosomes. Curr Opin Microbiol 1998; 1:448–454.PubMedCrossRefGoogle Scholar
  26. 26.
    Overath P, Stierhof Y, Wiese M. Endocytosis and secretion in trypanosomatid parasites—tumultuous traffic in a pocket. Trends Cell Biol 1997; 7:27–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Landfear SM, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 2001; 115:1–17.PubMedCrossRefGoogle Scholar
  28. 28.
    Sogin M. History assignment: when was the mitochondrion founded? Curr Opin Genet Dev 1997; 7:792–799.PubMedCrossRefGoogle Scholar
  29. 29.
    Ilg T, Menz B, Winter G et al. Monoclonal antibodies to Leishmania mexicana promastigote antigens. I. Secreted acid phosphatase and other proteins share epitopes with lipophosphoglycan. J Cell Sci 1991; 99:175–180.PubMedGoogle Scholar
  30. 30.
    Andrews NW, Whitlow MB. Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol 1989; 33:249–256.PubMedCrossRefGoogle Scholar
  31. 31.
    Parodi AJ, Quesada-Allue LA. Protein glycosylation in Trypanosoma cruzi. I. Characterization of dolichol-bound monosaccharides and oligosaccharides synthesized “in vivo”. J Biol Chem 1982; 257:7637–7640.PubMedGoogle Scholar
  32. 32.
    Quesada-Allue LA, Parodi AJ. Novel mannose carrier in the trypanosomatid Crithidia fasciculata behaving as a short alpha-saturated polyprenyl phosphate. Biochem J 1983; 212:123–128.PubMedGoogle Scholar
  33. 33.
    Low P, Dallner G, Mayor S et al. The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues. J Biol Chem 1991; 266:19250–19257.PubMedGoogle Scholar
  34. 34.
    de la Canal L, Parodi AJ. Synthesis of dolichol derivatives in trypanosomatids. Characterization of enzymatic patterns. J Biol Chem 1987; 262:11128–11133.PubMedGoogle Scholar
  35. 35.
    Parodi AJ, Quesada Allue LA, Cazzulo JJ. Pathway of protein glycosylation in the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci USA 1981; 78:6201–6205.PubMedCrossRefGoogle Scholar
  36. 36.
    Mendelzon DH, Previato JO, Parodi AJ. Characterization of protein-linked oligosaccharides in trypanosomatid flagellates. Mol Biochem Parasitol 1986; 18:355–367.PubMedCrossRefGoogle Scholar
  37. 37.
    Bosch M, Trombetta S, Engstrom U et al. Characterization of dolichol diphosphate oligosaccharide: protein oiigosaccharyltransferase and glycoprotein-processing glucosidases occurring in trypanosomatid protozoa. J Biol Chem 1988; 263:17360–17365.PubMedGoogle Scholar
  38. 38.
    Parodi AJ, Lederkremer GZ, Mendelzon DH. Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides. J Biol Chem 1983; 258:5589–5595.PubMedGoogle Scholar
  39. 39.
    Trombetta SE, Bosch M, Parodi AJ. Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes. Biochemistry 1989; 28:8108–8116.PubMedCrossRefGoogle Scholar
  40. 40.
    Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999; 286:1882–1888.PubMedCrossRefGoogle Scholar
  41. 41.
    Parodi AJ. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 2000; 348:1–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Bangs JD, Uyetake L, Brickman MJ et al. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci 1993; 105:1101–1113.PubMedGoogle Scholar
  43. 43.
    Hsu MP, Muhich ML, Boothroyd JC. A developmentally regulated gene of trypanosomes encodes a homologue of rat protein-disulfide isomerase and phosphoinositol-phospholipase C. Biochemistry 1989; 28:6440–6446.PubMedCrossRefGoogle Scholar
  44. 44.
    Joshi M, Pogue GP, Duncan R et al. Isolation and characterization of Leishmania donovani calreticulin gene and its conservation of the RNA binding activity. Mol. Biochem. Parasitol 1996; 81:53–64.Google Scholar
  45. 45.
    Bangs JD, Brouch EM, Ransom DM et al. A soluble secretory reporter system in Trypanosoma brucei. Studies on endoplasmic reticulum targeting. J Biol Chem 1996; 271:18387–18393.PubMedCrossRefGoogle Scholar
  46. 46.
    Nakhasi HL, Pogue GP, Duncan RD et al. Implications of calreticulin function in parasite biology. Parasitology Today 1998; 14:157–160.PubMedCrossRefGoogle Scholar
  47. 47.
    Cruz A, Coburn CM, Beverley SM. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci USA 1991; 88:7170–7174.PubMedCrossRefGoogle Scholar
  48. 48.
    Dumas C, Ouellette M, Tovar J et al. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. Embo J 1997; 16:2590–2598.PubMedCrossRefGoogle Scholar
  49. 49.
    Cunningham ML, Titus RG, Turco SJ et al. Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Science 2001; 292:285–287.PubMedCrossRefGoogle Scholar
  50. 50.
    Mesaeli N, Nakamura K, Zvaritch E et al. Calreticulin is essential for cardiac development. J Cell Biol 1999; 144:857–868.PubMedCrossRefGoogle Scholar
  51. 51.
    Bates PA, Hermes I, Dwyer DM. Leishmania donovani: immunochemical localization and secretory mechanism of soluble acid phosphatase. Exp Parasitol 1989; 68:335–346.PubMedCrossRefGoogle Scholar
  52. 52.
    Bates PA, Hermes 1, Dwyer DM. Golgi-mediated post-translational processing of secretory acid phosphatase by Leishmania donovani promastigotes. Moi Biochem Parasitol 1990; 39:247–255.CrossRefGoogle Scholar
  53. 53.
    Hurtley SM, Bole DG, Hoover-Litty H et al. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J Cell Biol 1989; 108:2117–2126.PubMedCrossRefGoogle Scholar
  54. 54.
    Klausner RD, Sitia R. Protein degradation in the endoplasmic reticulum. Cell 1990; 62:611–614.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang JX, Braakman I, Matlack KE et al. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell 1997; 8:1943–1954.PubMedGoogle Scholar
  56. 56.
    Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288:331–333.PubMedCrossRefGoogle Scholar
  57. 57.
    Shakarian AM, Ellis SL, Mallinson DJ et al. Two tandemly arrayed genes encode the (histidine) secretory acid phosphatases of Leishmania donovani. Gene 1997; 196:127–137.PubMedCrossRefGoogle Scholar
  58. 58.
    Sacks DL. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 1989; 69:100–103.PubMedCrossRefGoogle Scholar
  59. 59.
    Goyal N, Guru PY, Rastogi AK. Status of glutathione in lymphoid tissues of golden hamster during Leishmania donovani infection. Indian J Biochem Biophys 1994; 31:211–213.PubMedGoogle Scholar
  60. 60.
    Ghedin E, Charest H, Zhang WW et al. Inducible expression of suicide genes in Leishmania donovani amastigotes. J Biol Chem 1998; 273:22997–23003.PubMedCrossRefGoogle Scholar
  61. 61.
    Michalak M, Corbett EF, Mesaeli N et al. Calreticulin: one protein, one gene, many functions. Biochem J 1999; 344:281–292.PubMedCrossRefGoogle Scholar
  62. 62.
    High S, Lecomte FJ, Russell SJ et al. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett 2000; 476:38–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Frickel EM, Riek R, Jelesarov I et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002; 99:1954–1959.PubMedCrossRefGoogle Scholar
  64. 64.
    Gottlieb M, Dwyer DM. Identification and partial characterization of an extracellular acid phosphatase activity of Leishmania donovani promastigotes. Mol Cell Biol 1982; 2:76–81.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alain Debrabant
  • Nancy Lee
  • Dennis M. Dwyer
  • Hira L. Nakhasi

There are no affiliations available

Personalised recommendations