Skip to main content

Calreticulin in Cytotoxic Lymphocyte-Mediated Cytotoxicity

  • Chapter
Calreticulin

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

New functions are implicated for calreticulin, based on its release from cytotoxic NK and T cells. Calreticulin is the only one of six “KDEL” (Lys-Asp-Glu-Leu carboxy terminal) endoplasmic reticulum chaperone proteins present in cytotoxic granules of these lymphocytes. Calreticulin is released when the lymphocytes release their granules to kill other cells, which suggests that it is likely to have an important role. In this chapter, we briefly review the contents of cytotoxic granules and how calreticulin might interact with these proteins. Then we discuss calreticulin inactivation of lysis mediated by perforin, a pore-forming protein which is essential for granule-mediated toxicity. Calreticulin is degraded by granzymes (proteases found within the cytotoxic granules), particularly by one granzyme, Chymase 1. Chymase 1 was previously identified as required for granule-mediated lysis, which could indicate that the calreticulin function(s) may be temporally regulated. We also introduce our “inactivation of the inactivator” hypothesis (granzyme-degradation of the inactivator calreticulin) as a focus for evaluation of the present information and as a focus to identify critical information to collect in the future. Finally, we provide the reader with additional functions of calreticulin that could be important for systemic immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrin C, Pinkoski MJ, Burns K et al. Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry 1998; 37:10386–10394.

    Article  PubMed  CAS  Google Scholar 

  2. Page LJ, Darmon AJ, Uellner R et al. L is for lytic granules: lysosomes that kill. Biochim Biophys Acta 1998; 1401:146–156.

    Article  PubMed  CAS  Google Scholar 

  3. Liu C-C, Walsh CM, Young JDE. Perforin: structure and function. Immunol Today 1995; 16:194–201.

    Article  PubMed  Google Scholar 

  4. Tschopp J, Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Ann Rev Immunol 1990; 8:279–302.

    Article  CAS  Google Scholar 

  5. Henkart PA. Cytotoxic T lymphocytes. In: Paul WE Jr, ed. Fundamental Immunology. Philadelphia: Lippincott-Raven, 1999:1021–1050.

    Google Scholar 

  6. Bonavida B, Bradley TP, Grimm EA. The single cell assay in cell-mediated cytotoxicity. Im Today 1983; 4:196–198.

    Article  Google Scholar 

  7. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47:187–376.

    Article  PubMed  CAS  Google Scholar 

  8. Smyth MJ, Kelly JM, Sutton VR et al. Unlocking the secrets of cytotoxic granule proteins. J Leukoc Biol 2001; 70:18–29.

    PubMed  CAS  Google Scholar 

  9. Pena SV, Hanson DA, Carr BA et al. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small lytic granule proteins. J Immunol 1997; 158:2680–2688.

    PubMed  CAS  Google Scholar 

  10. Pena SV, Krensky AM. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin Immunol 1997; 9:117–125.

    Article  PubMed  CAS  Google Scholar 

  11. Stenger S, Hanson DA, Teitelbaum R et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282:121–125.

    Article  PubMed  CAS  Google Scholar 

  12. Hudig D, Ewoldt GR, Woodard SL. Proteases and lymphocyte cytotoxic killing mechanisms. Curr Opin Immunol 1993; 5:90–96.

    Article  PubMed  CAS  Google Scholar 

  13. Woodard SL, Fraser SA, Winkler U et al. Purification and characterization of lymphocyte Chymase I, a granzyme implicated in perforin-mediated lysis. J Immunol 1998; 160:4988–4993.

    PubMed  CAS  Google Scholar 

  14. Vassilakos A, Michalak M, Lehrman MA et al. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 1998; 37:3480–3490.

    Article  PubMed  CAS  Google Scholar 

  15. Podack ER, Königsberg PJ.1984. Cytolytic T cell granules: Isolation, structural, biochemical, and functional characterization. J Exp Med 1984; 160:695–710.

    Article  PubMed  CAS  Google Scholar 

  16. Dupuis M, Schaerer E, Krause K-H et al. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 1993; 177:1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Burns K, Helgason CD, Bleackley RC et al. Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 1992; 267:19039–19042.

    PubMed  CAS  Google Scholar 

  18. Fraser SA, Michalak M, Welch WH et al. Calreticulin, a component of the endoplasmic reticulum and of cytotoxic lymphocyte granules, regulates perforin-mediated lysis in the hemolytic model system. Biochem Cell Biol 1998; 76:881–887.

    Article  PubMed  CAS  Google Scholar 

  19. Fraser SA, Karimi R, Michalak M et al. Perforin lytic activity is controlled by calreticulin. J Immunol 2000; 164:4150–4155.

    PubMed  CAS  Google Scholar 

  20. Woodard SL, Jackson DS, Abuelyaman AS et al. Chymase-directed serine protease inhibitor that reacts with a single 30 kDa granzyme and blocks NK-mediated cytotoxicity. J Immunol 1994; 153:5016–5025.

    PubMed  CAS  Google Scholar 

  21. Corbett EF, Michalak KM, Oikawa K et al. The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J Biol Chem 2000; 275:27177–27185.

    PubMed  CAS  Google Scholar 

  22. Bouvier M, Stafford WF. Probing the three-dimensional structure of human calreticulin. Biochemistry 2000; 39:14950–14959.

    Article  PubMed  CAS  Google Scholar 

  23. Coppolino MG, Woodside MJ, Demaurex N et al. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 1997; 386:843–847.

    Article  PubMed  CAS  Google Scholar 

  24. Burns K, Duggan B, Atkinson EA et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 1994; 367:476–480.

    Article  PubMed  CAS  Google Scholar 

  25. Dedhar S, Rennie PS, Shago M et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994; 367:480–483.

    Article  PubMed  CAS  Google Scholar 

  26. Tschopp J, Schafer S, Masson D et al. Phosphorylcholine acts as a Ca2+-dependent receptor molecule for lymphocyte perforin. Nature 1989; 337:272–274.

    Article  PubMed  CAS  Google Scholar 

  27. Kuwabara K, Pinsky DJ, Schmidt A et al. Calreticulin, an Antithrombotic Agent Which Binds to Vitamin K-dependent Coagulation Factors, Stimulates Endothelial Nitric oxide Production, and Limits Thrombosis in Canine Coronary Arteries. J Biol Chem 1995; 270:8179–8187.

    Article  PubMed  CAS  Google Scholar 

  28. Basu S, Binder RJ, Ramalingam T et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14:303–313.

    Article  PubMed  CAS  Google Scholar 

  29. Jones J, Morgan BP. Killing of cells by perforin. Resistance to killing is not due to diminished binding of perforin to cell membrane. Biochem J 1991; 280:199–204.

    PubMed  CAS  Google Scholar 

  30. Jones J, Hallett MB, Morgan BP. Reversible cell damage by T-cell performs. Calcium influx and propidium iodide uptake into K562 cells in the absence of lysis. Biochem J 1990; 267:303–307.

    PubMed  CAS  Google Scholar 

  31. Arosa FA, De Jesus O, Porto G et al. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 1999; 274:16917–16922.

    Article  PubMed  CAS  Google Scholar 

  32. Ogden CA, deCathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194:781–795.

    Article  PubMed  CAS  Google Scholar 

  33. Sim RB, Moestrup SK, Stuart GR et al. Interaction of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology 1998; 199:208–224.

    Article  PubMed  CAS  Google Scholar 

  34. Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor-and peptide-specific immunity. J Exp Med 1999; 189:797–802.

    Article  PubMed  CAS  Google Scholar 

  35. Kishore U, Sontheimer RD, Sastry KN et al. Release of calreticulin from neutrophils may alter C1q-mediated immune functions. Biochem J 1997; 322:543–550.

    PubMed  CAS  Google Scholar 

  36. Beresford PJ, Xia Z, Greenberg AH et al. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 1999; 10:585–594.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang D, Pasternack MS, Beresford PJ et al. Induction of rapid histone degradation by the cytotoxic T lymphocyte protease Granzyme A. J Biol Chem 2001; 276:3683–3690.

    Article  PubMed  CAS  Google Scholar 

  38. Kam C-M, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta 2000; 1477:307–323.

    Article  PubMed  CAS  Google Scholar 

  39. Sharif-Askari E, Alam A, Rheaume E et al. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J 2001; 20:3101–3113.

    Article  PubMed  CAS  Google Scholar 

  40. Shi L, Kam C-M, Powers JC et al. Purification of three lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target interactions. J Exp Med 1992; 176:1521–1529.

    Article  PubMed  CAS  Google Scholar 

  41. Smyth MJ, Sayers TJ, Wiltrout T et al. Met-ase: cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells. J Immunol 1993; 151:6195–6205.

    PubMed  CAS  Google Scholar 

  42. Griffiths GM, Isaaz S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 1993; 120:885–896.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hudig, D., Karimi, R. (2003). Calreticulin in Cytotoxic Lymphocyte-Mediated Cytotoxicity. In: Eggleton, P., Michalak, M. (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9258-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9258-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4862-7

  • Online ISBN: 978-1-4419-9258-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics