Skip to main content

Calnexin and Calreticulin, ER Associated Modulators of Calcium Transport in the ER

  • Chapter
Calreticulin

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Calreticulin (CRT) and calnexin (CNX) are members of a family of endoplasmic reticulum (ER) chaperones that fold newly synthesized polypeptides. Aside from their role as foldases in the ER, our laboratory has shown that all members of this family of proteins modulate Ca2+ oscillations. In Xenopus oocytes and other cells, stimulation by G-protein and tyrosine coupled receptors results in Ca2+ release from the Inositol 1,4,5 trisphosphate receptor (IP3R) located in the ER. Following release, Ca2+ is re-sequestered into the ER by Ca2+ ATPases of the SERCA family. CRT and CNX overexpression inhibit Ca2+ oscillations when co-expressed with SERCA2b or when oocytes are treated with pyruvate malate to induce oscillations. By domain deletion mutagenesis of CRT we have determined that the N and P domains are necessary for the inhibition of Ca2+ oscillations. The mechanism of inhibition may involve a lectin-like interaction since mutagenesis of a lumenal asparagine to alanine in SERCA2b destroys the inhibitory effect. Coexpression of SERCA2a (which lacks the luminal asparagine) with either CRT or CNX does not inhibit Ca2+ oscillations, consistent with the notion that a lectin interaction may be involved. Unlike CRT, which is entirely lumenal, CNX has a cytosolic domain that is phosphorylated by multiple kinases. Mutagenesis of two PKC/PDK residues in CNX indicated that S562 supports phosphorylation. Expression of SERCA2b with a mutated CNX in S562 prevents the inhibition of Ca2+ oscillations suggesting that this residue serves as a phosphorylatable regulatory switch controlling the interaction of CNX with SERCA2b. Indeed, immunoprecipitations with a CNX specific antibody of oocytes treated with or without IP3 and preloaded with [γ-32P]-ATP demonstrated that S562 is phosphorylated at rest and dephosphorylated in response to IP3. Phosphorylation-mediated control of the interaction of CNX with SERCA2b is of significance since it suggests a bi-directional mode of communication between the Ca2+ signaling system and the folding machinery in the ER to maintain Ca2+ homeostasis in the organelle. The maintenance of Ca2+ homeostasis in the ER is then essential for protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Missiaen L, Taylor CW, Berridge MJ. Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphate-sensitive stores in rat hepatocytes. J Physiol 1992; 455:623–40.

    PubMed  CAS  Google Scholar 

  2. Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 1991; 266:21458–65.

    PubMed  CAS  Google Scholar 

  3. Fliegel L, Burns K, MacLennan DH et al. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989; 264(36):21522–8.

    PubMed  CAS  Google Scholar 

  4. Milner RE, Baksh S, Shemanko C et al. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 1991; 266(11):7155–65.

    PubMed  CAS  Google Scholar 

  5. Camacho P, Lechleiter JD. Xenpus oocytes as a tool in calcium signaling research. In: Putney J, ed. Calcium Signaling. Boca Raton: CRC Press, 2000:157–81.

    Google Scholar 

  6. Jouaville LS, Ichas F, Holmuhamedov EL et al. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 1995; 377(6548):438–41.

    Article  PubMed  CAS  Google Scholar 

  7. Camacho P, Lechleiter JD. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 1995; 82(5):765–71.

    Article  PubMed  CAS  Google Scholar 

  8. Roderick HL, Lechleiter JD, Camacho P. Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 2000; 149(6):1235–48.

    Article  PubMed  CAS  Google Scholar 

  9. John LM, Lechleiter JD, Camacho P. Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 1998; 142(4):963–73.

    Article  PubMed  CAS  Google Scholar 

  10. Camacho P, Lechleiter JD. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium-ATPase. Science 1993; 260(5105):226–9.

    Article  PubMed  CAS  Google Scholar 

  11. Bergeron JJ, Brenner MB, Thomas DY et al. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 1994; 19(3):124–8.

    Article  PubMed  CAS  Google Scholar 

  12. Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 2001; 13(4):431–7.

    Article  PubMed  CAS  Google Scholar 

  13. Jakob CA, Chevet E, Thomas DY et al. Lectins of the ER quality control machinery. Results Probl Cell Differ 2001; 33:1–17.

    Article  PubMed  CAS  Google Scholar 

  14. Helenius A, Trombetta ES, Hebert DN et al. Calnexin, Calreticulin, and the folding of glycoproteins. Trends Cell Biol 1997; 7:193–200.

    Article  CAS  Google Scholar 

  15. Michalak M, Milner RE, Burns K et al. Calreticulin. Biochem J 1992; 285(Pt 3):681–92.

    PubMed  CAS  Google Scholar 

  16. Schrag JD, Bergeron JJ, Li Y et al. The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 2001; 8(3):633–44.

    Article  PubMed  CAS  Google Scholar 

  17. Ellgaard L, Riek R, Herrmann T et al. NMR structure of the calreticulin P-domain. Proc Natl Acad Sci USA 2001; 98(6):3133–8.

    Article  PubMed  CAS  Google Scholar 

  18. Ellgaard L, Riek R, Braun D et al. Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment. FEBS Letters 2001; 488(1-2):69–73.

    Article  PubMed  CAS  Google Scholar 

  19. Frickel EM, Riek R, Jelesarov I et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002; 99(4):1954–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gunteski-Hamblin AM, Greeb J, Shull GE. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem 1988; 263(29):15032–40.

    PubMed  CAS  Google Scholar 

  21. Lytton J, Westlin M, Burk SE et al. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 1992; 267(20):14483–9.

    PubMed  CAS  Google Scholar 

  22. Verboomen H, Wuytack F, De Smedt H et al. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 1992; 286(Pt 2):591–5.

    PubMed  CAS  Google Scholar 

  23. Verboomen H, Wuytack F, Van den Bosch L et al. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca(2+)-transport ATPase (SERCA2a/b). Biochem J 1994; 303(Pt 3):979–84.

    PubMed  CAS  Google Scholar 

  24. Wu KD, Lee WS, Wey J et al. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol 1995; 269(3Pt l):C775–84.

    PubMed  CAS  Google Scholar 

  25. Bayle D, Weeks D, Sachs G. The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J Bio Chem 1995; 270(43):25678–84.

    Article  CAS  Google Scholar 

  26. Ihara Y, Cohen-Doyle MF, Saito Y et al. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 1999; 4(3):331–41.

    Article  PubMed  CAS  Google Scholar 

  27. Saito Y, Ihara Y, Leach MR et al. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 1999; 18(23):6718–29.

    Article  PubMed  CAS  Google Scholar 

  28. Tjoelker LW, Seyfried CE, Eddy RL Jr et al. Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 1994; 33(11):3229–36.

    Article  PubMed  CAS  Google Scholar 

  29. Wong HN, Ward MA, Bell AW et al. Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a protein kinase C/proline-directed kinase site. J Biol Chem 1998; 273(27):17227–35.

    Article  PubMed  CAS  Google Scholar 

  30. Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, cakineurin. J Biol Chem 1998; 273(22):13367–70.

    Article  PubMed  CAS  Google Scholar 

  31. Corbett EF, Oikawa K, Francois P et al. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 1999; 274(10):6203–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Camacho, P., John, L., Li, Y., Paredes, R.M., Roderick, H.L. (2003). Calnexin and Calreticulin, ER Associated Modulators of Calcium Transport in the ER. In: Eggleton, P., Michalak, M. (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9258-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9258-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4862-7

  • Online ISBN: 978-1-4419-9258-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics