Advertisement

Calreticulin pp 105-125 | Cite as

Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease

  • György Szabadkai
  • Mounia Chami
  • Paolo Pinton
  • Rosario Rizzuto
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The endoplasmic reticulum (ER) is the main intracellular agonist-sensitive Ca2+ store, and is involved in the regulation of a wide range of cellular functions depending on cytosolic Ca2+. In addition, it has recently been recognized that Ca2+ regulates also processes occurring in the ER lumen, such as protein synthesis and trafficking, and cellular responses to stress. Accordingly, perturbation of ER Ca2+ homeostasis appears to be a key component in the development of several pathological situations. In this chapter, after providing an overview of the Ca2+ signaling components of the ER, we briefly summarize their role in basic pathophysiological processes and specific diseases.

Keywords

Ryanodine Receptor Malignant Hyperthermia Cell Calcium Nicotinic Acid Adenine Dinucleotide Phosphate Central Core Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clapham DE. Calcium signaling. Cell 1995; 80:259–268.PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 2000; 1:11–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Carafoli E, Santella L, Branca D et al. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 2001; 36:107–260.PubMedCrossRefGoogle Scholar
  4. 4.
    Pozzan T, Rizzuto R, Volpe P et al. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 1994; 74:595–636.PubMedCrossRefGoogle Scholar
  5. 5.
    Elliott AC. Recent developments in non-excitable cell calcium entry. Cell Calcium 2001; 30:73–93.PubMedCrossRefGoogle Scholar
  6. 6.
    East JM. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol 2000; 17:189–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Lechleiter JD, John LM, Camacho P. Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. Biophys Chem 1998; 72:123–129.PubMedCrossRefGoogle Scholar
  8. 8.
    Missiaen L, Van Acker K, Parys JB et al. Baseline cytosolic Ca2+ oscillations derived from a non-endoplasmic reticulum Ca2+ store. J Biol Chem 2001; 276:39161–39170.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitchell KJ, Pinton P, Varadi A et al. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 2001; 155:41–51.PubMedCrossRefGoogle Scholar
  10. 10.
    da Silva CP, Guse AH. Intracellular Ca2+ release mechanisms: multiple pathways having multiple functions within the same cell type? Biochim Biophys Acta 2000; 1498:122–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Berridge MJ. Elementary and global aspects of calcium signaling. J Exp Biol 1997; 200(Pt 2):315–319.PubMedGoogle Scholar
  12. 12.
    Johnson JD, Chang JP. Function-and agonist-specific Ca2+ signaling: the requirement for and mechanism of spatial and temporal complexity in Ca2+ signals. Biochem Cell Biol 2000; 78:217–240.PubMedGoogle Scholar
  13. 13.
    Bootman MD, Lipp P, Berridge MJ. The organization and functions of local Ca2+ signals. J Cell Sci 2001; 114:2213–2222.PubMedGoogle Scholar
  14. 14.
    Koulen P, Thrower EC. Pharmacological modulation of intracellular Ca2+ channels at the single-channel level. Mol Neurobiol 2001; 24:65–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Shoshan-Baxmatz V, Ashley RH. The structure, function, and cellular regulation of ryanodinesensitive Ca2+ release channels. Int Rev Cytol 1998; 183:185–270.CrossRefGoogle Scholar
  16. 16.
    Berridge MJ, Irvine RF. Inositol phosphates and cell signaling. Nature 1989; 341:197–205.PubMedCrossRefGoogle Scholar
  17. 17.
    Monkawa T, Miyawaki A, Sugiyama T et al. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 1995; 270:14700–14704.PubMedCrossRefGoogle Scholar
  18. 18.
    Patel S, Joseph SK, Thomas AP. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 1999; 25:247–264.PubMedCrossRefGoogle Scholar
  19. 19.
    Guse AH. Cyclic ADP-ribose. J Mol Med 2000; 78:26–35.PubMedCrossRefGoogle Scholar
  20. 20.
    Noguchi N, Takasawa S, Nata K et al. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem 1997; 272:3133–3136.PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas JM, Masgrau R, Churchill GC et al. Pharmacological characterization of the putative cADP-ribose receptor. Biochem J 2001; 359:451–457.PubMedCrossRefGoogle Scholar
  22. 22.
    Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 2001; 65:309–338.PubMedCrossRefGoogle Scholar
  23. 23.
    Patel S, Churchill GC, Galione A. Coordination of Ca2+ signaling by NAADP. Trends Biochem Sci 2001; 26:482–489.PubMedCrossRefGoogle Scholar
  24. 24.
    Patel S, Churchill GC, Sharp T et al. Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinudeotide phosphate, in the brain. J Biol Chem 2000; 275:36495–36497.PubMedCrossRefGoogle Scholar
  25. 25.
    Koulen P, Cai Y, Geng L et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 2002; 4:191–197.PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzalez-Perret S, Kim K, Ibarra C et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 2001; 98:1182–1187.CrossRefGoogle Scholar
  27. 27.
    John LM, Lechleiter JD, Camacho P. Differential modulation of SERCA2 isoforms by calrcticulin. J Cell Biol 1998; 142:963–973.PubMedCrossRefGoogle Scholar
  28. 28.
    Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 1998; 23:10–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Putney JW Jr, Broad LM, Braun FJ et al. Mechanisms of capacitative calcium entry. J Cell Sci 2001; 114:2223–2229.PubMedGoogle Scholar
  30. 30.
    Putney JW Jr, Ribeiro CM. Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 2000; 57:1272–1286.PubMedCrossRefGoogle Scholar
  31. 31.
    Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 2001; 13:431–437.PubMedCrossRefGoogle Scholar
  32. 32.
    Corbett EF, Michalak M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem Sci 2000; 25:307–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Michalak M, Corbett EF, Mesaeli N et al. Calreticulin: one protein, one gene, many functions. Biochem J 1999; 344Pt 2:281–292.PubMedCrossRefGoogle Scholar
  34. 34.
    Pahl HL, Baeuerle PA. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci 1997; 22:63–67.PubMedCrossRefGoogle Scholar
  35. 35.
    Soboloff J, Berger SA. Sustained ER Ca2+ Depletion Suppresses Protein Synthesis and Induces Activation-enhanced Cell Death in Mast Cells. J Biol Chem 2002; 277:13812–13820.PubMedCrossRefGoogle Scholar
  36. 36.
    Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3:E255–E263.PubMedCrossRefGoogle Scholar
  37. 37.
    Michalak M, Burns K, Andrin C et al. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 1996; 271:29436–29445.PubMedCrossRefGoogle Scholar
  38. 38.
    Opas M, Szewczenko-Pawlikowski M, Jass GK et al. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol 1996; 135:1913–1923.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaufman RJ. Molecular chaperones and the heat shock response. Biochim Biophys Acta 1999; 1423:R13–R27.PubMedGoogle Scholar
  40. 40.
    Meldolesi J, Pozzan T. The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 1998; 142:1395–1398.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee MG, Xu X, Zeng W et al. Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 1997; 272:15771–15776.PubMedCrossRefGoogle Scholar
  42. 42.
    Kasai H, Petersen OH. Spatial dynamics of second messengers: 1P3 and cAMP as long-range and associative messengers. Trends Neurosci 1994; 17:95–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Petersen OH, Burdakov D, Tepikin AV. Polarity in intracellular calcium signaling. Bioessays 1999; 21:851–860.PubMedCrossRefGoogle Scholar
  44. 44.
    Blaustein MP, Golovina VA. Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 2001; 24:602–608.PubMedCrossRefGoogle Scholar
  45. 45.
    Petersen OH, Tepikin A, Park MK. The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci 2001; 24:271–276.PubMedCrossRefGoogle Scholar
  46. 46.
    Rizzuto R, Simpson AW, Brini M et al. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 1992; 358:325–327.PubMedCrossRefGoogle Scholar
  47. 47.
    Rizzuto R, Brini M, Murgia M et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 1993; 262:744–747.PubMedCrossRefGoogle Scholar
  48. 48.
    Rizzuto R, Bastianutto C, Brini M et al. Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 1994; 126:1183–1194.PubMedCrossRefGoogle Scholar
  49. 49.
    Hajnoczky G, Robb-Gaspers LD, Seitz MB et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995; 82:415–424.PubMedCrossRefGoogle Scholar
  50. 50.
    Brini M, De Giorgi F, Murgia M et al. Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 1997; 8:129–143.PubMedGoogle Scholar
  51. 51.
    Montero M, Alonso MT, Carnicero E et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2000; 2:57–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Szalai G, Csordas G, Hantash BM et al. Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 2000; 275:15305–15313.PubMedCrossRefGoogle Scholar
  53. 53.
    Satoh T, Ross CA, Villa A et al. The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 1990; 111:615–624.PubMedCrossRefGoogle Scholar
  54. 54.
    Takei K, Stukenbrok H, Metcalf A et al. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca2+-ATPase, and calsequestrin. J Neurosci 1992; 12:489–505.PubMedGoogle Scholar
  55. 55.
    Mannella CA, Buttle K, Rath BK et al. Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 1998; 8:225–228.PubMedCrossRefGoogle Scholar
  56. 56.
    Rizzuto R, Pinton P, Carrington W et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998; 280:1763–1766.PubMedCrossRefGoogle Scholar
  57. 57.
    Csordas G, Thomas AP, Hajnoczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 1999; 18:96–108.PubMedCrossRefGoogle Scholar
  58. 58.
    Friel DD, Tsien RW. An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci 1994; 14:4007–4024.PubMedGoogle Scholar
  59. 59.
    Jouaville LS, Ichas F, Mazat JP. Modulation of cell calcium signals by mitochondria. Mol Cell Biochem 1998; 184:371–376.PubMedCrossRefGoogle Scholar
  60. 60.
    Hajnoczky G, Hager R, Thomas AP. Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 1999; 274:14157–14162.PubMedCrossRefGoogle Scholar
  61. 61.
    Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J Physiol 1999; 516(Pt 1):1–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Landolfi B, Curci S, Debellis L et al. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. J Cell Biol 1998; 142:1235–1243.PubMedCrossRefGoogle Scholar
  63. 63.
    Arnaudeau S, Kelley WL, Walsh JV Jr et al. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 2001; 276:29430–29439.PubMedCrossRefGoogle Scholar
  64. 64.
    Vandecasteele G, Szabadkai G, Rizzuto R. Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 2001; 52:213–219.PubMedCrossRefGoogle Scholar
  65. 65.
    Hajnoczky G, Csordas G, Madesh M et al. The machinery of local Ca2+ signaling between sarco-endoplasmic reticulum and mitochondria. J Physiol 2000; 529Pt 1:69–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson BS, Pfeiffer JR, Smith AJ et al. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell 1998; 9:1465–1478.PubMedGoogle Scholar
  67. 67.
    Katayama E, Funahashi H, Michikawa T et al. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy. EMBO J 1996; 15:4844–4851.PubMedGoogle Scholar
  68. 68.
    Wang HJ, Guay G, Pogan L et al. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 2000; 150:1489–1498.PubMedCrossRefGoogle Scholar
  69. 69.
    Shiao YJ, Balcerzak B, Vance JE. A mitochondrial membrane protein is required for translocation of phosphatidylserine from mitochondria-associated membranes to mitochondria. Biochem J 1998; 331(Pt l):217–223.PubMedGoogle Scholar
  70. 70.
    Park MK, Petersen OH, Tepikin AV. The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J 2000; 19:5729–5739.PubMedCrossRefGoogle Scholar
  71. 71.
    Xiao B, Tu JC, Worley PF. Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 2000; 10:370–374.PubMedCrossRefGoogle Scholar
  72. 72.
    Xiao B, Tu JC, Petralia RS et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998; 21:707–716.PubMedCrossRefGoogle Scholar
  73. 73.
    Park MK, Ashby MC, Erdemli G et al. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 2001; 20:1863–1874.PubMedCrossRefGoogle Scholar
  74. 74.
    Sabatini BL, Maravall M, Svoboda K. Ca2+ signaling in dendritic spines. Curr Opin Neurobiol 2001; 11:349–356.PubMedCrossRefGoogle Scholar
  75. 75.
    Fasolato C, Hoth M, Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 1993; 268:20737–20740.PubMedGoogle Scholar
  76. 76.
    Yao Y, Ferrer-Montiel AV, Montai M et al. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 1999; 98:475–485.PubMedCrossRefGoogle Scholar
  77. 77.
    Broad LM, Braun FJ, Lievremont JP et al. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 2001; 276:15945–15952.PubMedCrossRefGoogle Scholar
  78. 78.
    Tsunoda S, Zuker CS. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 1999; 26:165–171.PubMedCrossRefGoogle Scholar
  79. 79.
    Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Review. Sci STKE 2001; 90:RE1.Google Scholar
  80. 80.
    Li HS, Montell C. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 2000; 150:1411–1422.PubMedCrossRefGoogle Scholar
  81. 81.
    Petersen OH, Gerasimenko OV, Gerasimenko JV et al. The calcium store in the nuclear envelope. Cell Calcium 1998; 23:87–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Badminton MN, Kendall JM, Rembold CM et al. Current evidence suggests independent regulation of nuclear calcium. Cell Calcium 1998; 23:79–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Brim M, Murgia M, Pasti L et al. Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 1993; 12:4813–4819.Google Scholar
  84. 84.
    Connor JA. Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization. Cell Calcium 1993; 14:185–200.PubMedCrossRefGoogle Scholar
  85. 85.
    Bootman MD, Thomas D, Tovey SC et al. Nuclear calcium signaling. Cell Mol Life Sci 2000; 57:371–378.PubMedCrossRefGoogle Scholar
  86. 86.
    Berridge MJ. Calcium signaling and cell proliferation. Bioessays 1995; 17:491–500.PubMedCrossRefGoogle Scholar
  87. 87.
    Duchen MR. Mitochondria and calcium: from cell signaling to cell death. J Physiol 2000; 529(Pt l):57–68.PubMedCrossRefGoogle Scholar
  88. 88.
    Nicotera P, Orrenius S. The role of calcium in apoptosis. Cell Calcium 1998; 23:173–180.PubMedCrossRefGoogle Scholar
  89. 89.
    Bernardi P, Scorrano L, Colonna R et al. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 1999; 264:687–701.PubMedCrossRefGoogle Scholar
  90. 90.
    Hajnoczky G, Csordas G, Madesh M et al. Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 2000; 28:349–363.PubMedCrossRefGoogle Scholar
  91. 91.
    Jayaraman T, Marks AR. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 1997; 17:3005–3012.PubMedGoogle Scholar
  92. 92.
    Khan AA, Soloski MJ, Sharp AH et al. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 1996; 273:503–507.PubMedCrossRefGoogle Scholar
  93. 93.
    Blackshaw S, Sawa A, Sharp AH et al. Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 2000; 14:1375–1379.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-rcticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403:98–103.PubMedCrossRefGoogle Scholar
  95. 95.
    Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150:887–894.PubMedCrossRefGoogle Scholar
  96. 96.
    Subramaman K, Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 1997; 89:963–971.CrossRefGoogle Scholar
  97. 97.
    Graber MN, Alfonso A, Gill DL. Ca2+ pools and cell growth: arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion. J Biol Chem 1996; 271:883–888.PubMedCrossRefGoogle Scholar
  98. 98.
    Short AD, Bian J, Ghosh TK et al. Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci USA 1993; 90:4986–4990.PubMedCrossRefGoogle Scholar
  99. 99.
    Baffy G, Miyashita T, Williamson JR et al. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem 1993; 268:6511–6519.PubMedGoogle Scholar
  100. 100.
    Distelhorst CW, Lam M, McCormick TS. Bcl-2 inhibits hydrogen peroxide-induced ER Ca2+ pool depletion. Oncogene 1996; 12:2051–2055.PubMedGoogle Scholar
  101. 101.
    Preston GA, Barrett JC, Biermann JA et al. Effects of alterations in calcium homeostasis on apoptosis during neoplastic progression. Cancer Res 1997; 57:537–542.PubMedGoogle Scholar
  102. 102.
    Pinton P, Ferrari D, Rapizzi E et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001; 20:2690–2701.PubMedCrossRefGoogle Scholar
  103. 103.
    Pinton P, Ferrari D, Magalhaes P et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 2000; 148:857–862.PubMedCrossRefGoogle Scholar
  104. 104.
    Dowd DR, MacDonald PN, Komm BS et al. Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol Endocrinol 1992; 6:1843–1848.PubMedCrossRefGoogle Scholar
  105. 105.
    Ma TS, Mann DL, Lee JH et al. SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium 1999; 26:25–36.PubMedCrossRefGoogle Scholar
  106. 106.
    Schendel SL, Xie Z, Montai MO et al. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997; 94:5113–5118.PubMedCrossRefGoogle Scholar
  107. 107.
    Minn AJ, Velez P, Schendel SL et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385:353–357.PubMedCrossRefGoogle Scholar
  108. 108.
    Schlesinger PH, Gross A, Yin XM et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 1997; 94:11357–11362.PubMedCrossRefGoogle Scholar
  109. 109.
    Rudner J, Lepple-Wienhues A, Budach W et al. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 2001; 114:4161–4172.PubMedGoogle Scholar
  110. 110.
    Wang NS, Unkila MT, Reineks EZ et al. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem 2001; 276:44117–44128.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee ST, Hoeflich KP, Wasfy GW et al. Bc!-2 targeted to the endoplasmic reticulum can inhibit apoptosis induced by Myc but not etoposide in Rat-1 fibroblasts. Oncogene 1999; 18:3520–3528.PubMedCrossRefGoogle Scholar
  112. 112.
    He H, Lam M, McCormick TS et al. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 1997; 138:1219–1228.PubMedCrossRefGoogle Scholar
  113. 113.
    Foyouzi-Youssefi R, Arnaudeau S, Borner C et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 2000; 97:5723–5728.PubMedCrossRefGoogle Scholar
  114. 114.
    Hofer AM, Fasolato C, Pozzan T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J Cell Biol 1998; 140:325–334.PubMedCrossRefGoogle Scholar
  115. 115.
    Bian X, Hughes FM Jr, Huang Y et al. Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am J Physiol 1997; 272:C1241–C1249.PubMedGoogle Scholar
  116. 116.
    Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 1999; 18:6349–6361.PubMedCrossRefGoogle Scholar
  117. 117.
    Fasolato C, Pizzo P, Pozzan T. Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol Biol Cell 1998; 9:1513–1522.PubMedGoogle Scholar
  118. 118.
    Xu W, Longo FJ, Wintermantel MR et al. Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca2+ store depletion. J Biol Chem 2000; 275:36676–36682.PubMedCrossRefGoogle Scholar
  119. 119.
    Camacho P, Lechleiter JD. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 1995; 82:765–771.PubMedCrossRefGoogle Scholar
  120. 120.
    Bastianutto C, Clementi E, Codazzi F et al. Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 1995; 130:847–855.PubMedCrossRefGoogle Scholar
  121. 121.
    Mery L, Mesaeli N, Michalak M et al. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 1996; 271:9332–9339.PubMedCrossRefGoogle Scholar
  122. 122.
    Nakamura K, Bossy-Wetzel E, Burns K et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000; 150:731–740.PubMedCrossRefGoogle Scholar
  123. 123.
    Simon VR, Moran MF. SERCA activity is required for timely progression through G1/S. Cell Prolif 2001; 34:15–30.PubMedCrossRefGoogle Scholar
  124. 124.
    Cheng G, Liu BF, Yu Y et al. The exit from G(0) into the cell cycle requires and is controlled by sarco(endo)plasmic reticulum Ca2+ pump. Arch Biochem Biophys 1996; 329:65–72.PubMedCrossRefGoogle Scholar
  125. 125.
    Meehan S, Wu AJ, Kang EC et al. Interferon-gamma induces a decrease in the intracellular calcium pump in a human salivary gland cell line. Am J Physiol 1997; 273:C2030–C2036.PubMedGoogle Scholar
  126. 126.
    Launay S, Bobe R, Lacabaratz-Porret C et al. Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation. J Biol Chem 1997; 272:10746–10750.PubMedCrossRefGoogle Scholar
  127. 127.
    Launay S, Gianni M, Kovacs T et al. Lineage-specific modulation of calcium pump expression during myeloid differentiation. Blood 1999; 93:4395–4405.PubMedGoogle Scholar
  128. 128.
    Magnier C, Papp B, Corvazier E et al. Regulation of sarco-endoplasmic reticulum Ca2+-ATPases during platelet-derived growth factor-induced smooth muscle cell proliferation. J Biol Chem 1992; 267:15808–15815.PubMedGoogle Scholar
  129. 129.
    Magnier-Gaubil C, Herbert JM, Quarck R et al. Smooth muscle cell cycle and proliferation. Relationship between calcium influx and sarco-endoplasmic reticulum Ca ATPase regulation. J Biol Chem 1996; 271:27788–27794.PubMedCrossRefGoogle Scholar
  130. 130.
    De Smedt H, Eggermont JA, Wuytack F et al. Isoform switching of the sarco(endo)plasmic reticulum Ca2+ pump during differentiation of BC3H1 myoblasts. J Biol Chem 1991; 266:7092–7095.Google Scholar
  131. 131.
    Chami M, Gozuacik D, Saigo K et al. Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 2000; 19:2877–2886.PubMedCrossRefGoogle Scholar
  132. 132.
    Chami M, Gozuacik D, Lagorce D et al. SERCAl truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 2001; 153:1301–1314.PubMedCrossRefGoogle Scholar
  133. 133.
    Tsuneoka M, Mekada E. Ras/MEK signaling suppresses Myc-dependent apoptosis in cells transformed by c-myc and activated ras. Oncogene 2000; 19:115–123.PubMedCrossRefGoogle Scholar
  134. 134.
    MacLennan DH, Duff C, Zorzato F et al. Ryanodine receptor gene is a candidate for predisposition to malignant hypothermia. Nature 1990; 343:559–561.PubMedCrossRefGoogle Scholar
  135. 135.
    MacLennan DH, Phillips MS. Malignant hyperthermia. Science 1992; 256:789–794.PubMedCrossRefGoogle Scholar
  136. 136.
    Tong J, McCarthy TV, MacLennan DH. Measurement of resting cytosolic Ca2+ concentrations and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem 1999; 274:693–702.PubMedCrossRefGoogle Scholar
  137. 137.
    Monnier N, Procaccio V, Stieglitz P et al. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 1997; 60:1316–1325.PubMedCrossRefGoogle Scholar
  138. 138.
    Fujii J, Otsu K, Zorzato F et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991; 253:448–451.PubMedCrossRefGoogle Scholar
  139. 139.
    Brandt A, Schleithoff L, Jurkat-Rott K et al. Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contracture test. Hum Mol Genet 1999; 8:2055–2062.PubMedCrossRefGoogle Scholar
  140. 140.
    Lynch PJ, Tong J, Lehane M et al. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci USA 1999; 96:4164–4169.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang Y, Chen HS, Khanna VK et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 1993; 5:46–50.PubMedCrossRefGoogle Scholar
  142. 142.
    Quane KA, Healy JM, Keating KE et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet 1993; 5:51–55.PubMedCrossRefGoogle Scholar
  143. 143.
    Odermatt A, Taschner PE, Khanna VK et al. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet 1996; 14:191–194.PubMedCrossRefGoogle Scholar
  144. 144.
    Odermatt A, Taschner PE, Scherer SW et al. Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 1997; 45:541–553.PubMedCrossRefGoogle Scholar
  145. 145.
    Missiaen L, Robberecht W, Van den BL et al. Abnormal intracellular Ca homeostasis and disease. Cell Calcium 2000; 28:1–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Periasamy M, Huke S. SERCA pump level is a critical determinant of Ca2+ homeostasis and cardiac contractility. J Mol Cell Cardiol 2001; 33:1053–1063.PubMedCrossRefGoogle Scholar
  147. 147.
    Zvaritch E, Backx PH, Jink F et al. The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 2000; 275:14985–14991.PubMedCrossRefGoogle Scholar
  148. 148.
    Zhai J, Schmidt AG, Hoit BD et al. Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J Biol Chem 2000; 275:10538–10544.PubMedCrossRefGoogle Scholar
  149. 149.
    Jones LR, Suzuki YJ, Wang W et al. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 1998; 101:1385–1393.PubMedCrossRefGoogle Scholar
  150. 150.
    Mesaeli N, Nakamura K, Zvaritch E et al. Calreticulin is essential for cardiac development. J Cell Biol 1999; 144:857–868.PubMedCrossRefGoogle Scholar
  151. 151.
    Matsui H, MacLennan DH, Alpert NR et al. Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 1995; 268:C252–C258.PubMedGoogle Scholar
  152. 152.
    Rannou F, Sainte-Beuve C, Oliviero P et al. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts. J Mol Cell Cardiol 1995; 27:1225–1234.PubMedCrossRefGoogle Scholar
  153. 153.
    Go LO, Moschella MC, Watras J et al. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995; 95:888–894.PubMedCrossRefGoogle Scholar
  154. 154.
    Lam E, Martin MM, Timerman AP et al. A novel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J Biol Chem 1995; 270:26511–26522.PubMedCrossRefGoogle Scholar
  155. 155.
    Atkison P, Joubert G, Barron A et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet 1995; 345:894–896.PubMedCrossRefGoogle Scholar
  156. 156.
    Shou W, Aghdasi B, Armstrong DL et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 1998; 391:489–492.PubMedCrossRefGoogle Scholar
  157. 157.
    Marx SO, Reiken S, Hisamatsu Y et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 2000; 101:365–376.PubMedCrossRefGoogle Scholar
  158. 158.
    Oshima T, Young EW, McCarron DA. Abnormal platelet and lymphocyte calcium handling in prehypertensive rats. Hypertension 1991; 18:111–115.PubMedCrossRefGoogle Scholar
  159. 159.
    Dent MA, Raisman G, Lai FA. Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. Development 1996; 122:1029–1039.PubMedGoogle Scholar
  160. 160.
    Lankford KL, Rand MN, Waxman SG et al. Blocking Ca2+ mobilization with thapsigargin reduces neurite initiation in cultured adult rat DRG neurons. Brain Res Dev Brain Res 1995; 84:151–163.PubMedCrossRefGoogle Scholar
  161. 161.
    Mattson MP, LaFerla FM, Chan SL et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222–229.PubMedCrossRefGoogle Scholar
  162. 162.
    Street VA, Bosma MM, Demas VP et al. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 1997; 17:635–645.PubMedGoogle Scholar
  163. 163.
    Zecevic N, Milosevic A, Ehrlich BE. Calcium signaling molecules in human cerebellum at midgestation and in ataxia. Early Hum Dev 1999; 54:103–116.PubMedCrossRefGoogle Scholar
  164. 164.
    Toescu EC. Apoptosis and cell death in neuronal cells: where does Ca2+ fit in? Cell Calcium 1998; 24:387–403.PubMedCrossRefGoogle Scholar
  165. 165.
    Khodorov BI. Mechanisms of destabilization of Ca2+-homeostasis of brain neurons caused by toxic glutamate challenge. Membr Cell Biol 2000; 14:149–162.PubMedGoogle Scholar
  166. 166.
    Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000; 80:315–360.PubMedGoogle Scholar
  167. 167.
    Tanzi RE, Bertram L. New frontiers in Alzheimer’s disease genetics. Neuron 2001; 32:181–184.PubMedCrossRefGoogle Scholar
  168. 168.
    Kim SH, Lah JJ, Thinakaran G et al. Subcellular localization of presenilins: association with a unique membrane pool in cultured cells. Neurobiol Dis 2000; 7:99–117.PubMedCrossRefGoogle Scholar
  169. 169.
    Scheuner D, Eckman C, Jensen M et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2:864–870.PubMedCrossRefGoogle Scholar
  170. 170.
    Fortini ME. Notch and presenilin: a proteolytic mechanism emerges. Curr Opin Cell Biol 2001; 13:627–634.PubMedCrossRefGoogle Scholar
  171. 171.
    Fraser PE, Yang DS, Yu G et al. Presenilin structure, function and role in Alzheimer disease. Biochim Biophys Acta 2000; 1502:1–15.PubMedCrossRefGoogle Scholar
  172. 172.
    Guo Q, Furukawa K, Sopher BL et al. Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC 12 cells to death induced by amyloid beta-peptide. Neuroreport 1996; 8:379–383.PubMedCrossRefGoogle Scholar
  173. 173.
    Chan SL, Mayne M, Holden CP et al. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275:18195–18200.PubMedCrossRefGoogle Scholar
  174. 174.
    Leissring MA, Parker I, LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 1999; 274:32535–32538.PubMedCrossRefGoogle Scholar
  175. 175.
    Leissring MA, Paul BA, Parker I et al. Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 1999; 72:1061–1068.PubMedCrossRefGoogle Scholar
  176. 176.
    Leissring MA, LaFerla FM, Callamaras N et al. Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiol Dis 2001; 8:469–478.PubMedCrossRefGoogle Scholar
  177. 177.
    Pack-Chung E, Meyers MB, Pettingell WP et al. Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J Biol Chem 2000; 275:14440–14445.PubMedCrossRefGoogle Scholar
  178. 178.
    Parent A, Linden DJ, Sisodia SS et al. Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 1999; 6:56–62.PubMedCrossRefGoogle Scholar
  179. 179.
    Zaman SH, Parent A, Laskey A et al. Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer’s disease mutation is normalized with a benzodiazepine. Neurobiol Dis 2000; 7:54–63.PubMedCrossRefGoogle Scholar
  180. 180.
    Yoo AS, Cheng I, Chung S et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27:561–572.PubMedCrossRefGoogle Scholar
  181. 181.
    Leissring MA, Akbari Y, Fanger CM et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149:793–798.PubMedCrossRefGoogle Scholar
  182. 182.
    Araki W, Yuasa K, Takeda S et al. Pro-apoptotic effect of presenilin 2 (PS2) overexpression is associated with down-regulation of Bcl-2 in cultured neurons. J Neurochem 2001; 79:1161–1168.PubMedCrossRefGoogle Scholar
  183. 183.
    Guo Q, Sopher BL, Furukawa K et al. Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997; 17:4212–4222.PubMedGoogle Scholar
  184. 184.
    Leissring MA, Yamasaki TR, Wasco W et al. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci USA 2000; 97:8590–8593.PubMedCrossRefGoogle Scholar
  185. 185.
    Cross AJ, Crow TJ, Johnson JA et al. Loss of endoplasmic reticulum-associated enzymes in affected brain regions in Huntington’s disease and Alzheimer-type dementia. J Neurol Sci 1985; 71:137–143.PubMedCrossRefGoogle Scholar
  186. 186.
    Sakuntabhai A, Ruiz-Perez V, Carter S et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 1999; 21:271–277.PubMedCrossRefGoogle Scholar
  187. 187.
    Peacocke M, Christiano AM. Bumps and pumps, SERCA 1999. Nat Genet 1999; 21:252–253.PubMedCrossRefGoogle Scholar
  188. 188.
    Roe MW, Philipson LH, Frangakis CJ et al. Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 1994; 269:18279–18282.PubMedGoogle Scholar
  189. 189.
    Varadi A, Lebel L, Hashim Y et al. Sequence variants of the sarco(endo)plasmic reticulum Ca2+-transport ATPase 3 gene (SERCA3) in Caucasian type II diabetic patients (UK Prospective Diabetes Study 48). Diabetologia 1999; 42:1240–1243.PubMedCrossRefGoogle Scholar
  190. 190.
    Varadi A, Molnar E, Ostenson CG et al. Isoforms of endoplasmic reticulum Ca2+-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 1996; 319(Pt2):521–527.PubMedGoogle Scholar
  191. 191.
    Jonas JC, Sharma A, Hasenkamp W et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 1999; 274:14112–14121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • György Szabadkai
  • Mounia Chami
  • Paolo Pinton
  • Rosario Rizzuto

There are no affiliations available

Personalised recommendations