Advertisement

Segmented Polyetheresters Containing Hydrogen Bonding Units

  • Francesca Signori
  • Roberto Solaro
  • Emo Chiellini
  • Priscilla A. M. Lips
  • Pieter J. Dijkstra
  • Jan Feijen
Conference paper

Abstract

In recent years, the growing interest in the delivery of protein and peptide drugs stimulated the development of new materials with tailored properties. Requisites to be fulfilled are the non-denaturation of the incorporated protein as well as the loaded drug and the possibility of controlling both the mechanism and kinetics of polymer degradation and drug release1.

Keywords

Hard Segment Soft Segment Peptide Drug Multiblock Copolymer Ether Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ulrich, K. E., Cannizzaro, S. M., Langer, R., and Shakesheff, K. M., 1999, Polymeric Systems for Controlled Drug Release. Chem. Rev. 99: 3181–3198.CrossRefGoogle Scholar
  2. 2.
    Jeong, B., Bae, Y. H., and Kim, S. W., 2000, Drug Release from Biodegradable Injectable Thermosensitive Hydrogel of PEG-PLGA-PEG Triblock Copolymers. J. Control Rel. 63: 155–163.CrossRefGoogle Scholar
  3. 3.
    Peracchia, M. T., Gref, R., Minamitake, Y., Domb, A., Lotan, N., and Langer, R., 1997, PEG-Coated Nanospheres from Amphiphilic Diblock and Multiblock Copolymers: Investigation of their Drug Encapsulation and Release Characteristics. J. Control Rel 46: 223–231.CrossRefGoogle Scholar
  4. 4.
    Saltzman, W. M., and Olbricht, W. L., 2002, Building Drug Delivery into Tissue Engineering. Nature Rev. 1: 177–186.CrossRefGoogle Scholar
  5. 5.
    Conn, D., and Younes, H., 1988, Biodegradable PEO/PLA Block Copolymers. J. Biomed. Mater. Res. 22: 993–1009.CrossRefGoogle Scholar
  6. 6.
    Casey, D. J., Jarret, P. K., and Rosati, I., 1987, Diblock and Triblock Copolymers. U. S. Pat. 4,716,203; Chem. Abstr. 108: 132531.Google Scholar
  7. 7.
    Cerrai, P., Tricoli, M., Andruzzi, F., and Paci, M., 2000, Polyether Ester Block Copolymers by non-Catalysed Polymerization of ε-Caprolactone with Poly(ethylene glycol). Polymer 30: 338–343.CrossRefGoogle Scholar
  8. 8.
    Bakker, D., van Blitterswijk, C. A., Hesseling, S. C., Koerten, H. K., Kuijpers, W., and Grote, J. J., 1990, Biocompatibility of a Polyether Urethane, Polypropilene Oxide, and a Polyether Polyester Copolymer. A Qualitative and Quantitative Study of three Alloplastic Tympanic Membrane Materials in the Rat Middle Ear. J. Biomed. Mater. Res. 24: 489–515.CrossRefGoogle Scholar
  9. 9.
    Bezemer, J. M., Oude Werne P., Grijpma, D. W., Dijkstra, P. J., van Blitterswijk, C. A., and Feijen, J., 2000, Amphiphilic Poly(ether ester amide) Multiblock Copolymers as Biodegradable Matrices for the Controlled Release of Proteins. J. Biomed. Mater. Res. 52: 8–17.CrossRefGoogle Scholar
  10. 10.
    Stapert, H R., Bouwens, A. M., Dijkstra, P. J., and Feijen, J., 1999, Enviromentally Degradable Aliphatic Poly(ester amide)s based on Short, Symmetrical and Uniform Bisamide-Diol Bloks 1. Synthesis and Interchange Reactions, Macromol Chem. Phys. 200: 1921–1929.CrossRefGoogle Scholar
  11. 11.
    Alia, L., Rodriguez-Galan, A., and Munoz-Guerra, S., 2000, Hydrolytic and Enzymatic Degradation of Copoly(ester amide)s based on L-Tartaric and Succinic acids. Polymer 41: 6995–7002.CrossRefGoogle Scholar
  12. 12.
    Paredes, N., Rodriguez-Galan, A., Puiggali, J., and Peraire, C., 1998, Studies on the Biodegradation and Biocompatibility of a New Poly(ester amide) Derived from L-Alanine. J. Appl. Polym. Sci. 69: 1537–1549.CrossRefGoogle Scholar
  13. 13.
    Paredes, N., Rodriguez-Galan, A., and Puiggali, J., 1998, Synthesis and Characterization of a Family of Biodegradable Poly(ester amide)s Derived from Glycine. J. Polym. Sci. Part A: Polym. Chem. 36: 1271–1282.CrossRefGoogle Scholar
  14. 14.
    Tuominen, J., and Seppala, J. V., 2000, Synthesis and Characterization of Lactic Acid Based Poly(ester amide). Macromolecules 33: 3530–3535.CrossRefGoogle Scholar
  15. 15.
    Villuendas, I., Bou, J. J., Rodriguez-Galan, A., and Munoz-Guerra, S., 2001, Alternanting Copoly(ester amide)s Derived from Amino Alcohols and L-tartaric and Succinic Acids. Macromol. Chem. Phys. 202: 236–244.CrossRefGoogle Scholar
  16. 16.
    Signori, F., Solaro, R., Chiellini, E., Lips, P.A.M., Dijkstra, P. J., and Feijen, J., 2003, Synthesis and Characterization of Segmented Poly(ether ester)s Containing H-bonding Units, Macromol. Chem. Phys. submitted.Google Scholar
  17. 17.
    Deschamps, A. A, Grijpma, D W, Feijen, J., 2002, Phase Separation and Physical Properties of PEO-Containing Poly(ether ester amide)s, J. Biomat. Sci. 13:1337–1352.Google Scholar
  18. 18.
    Signori, F., Solaro, R., Chiellini, E., Lips, P.A.M., Dijkstra, P. J., and Feijen, J., 2003, Synthesis and Characterization of Segmented Poly(ether ester)s Containing H-bonding Units and PEG segments, Macromol. Chem. Phys. submitted.Google Scholar
  19. 19.
    Owens, D. K., and Wendt, R. C., 1969, Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 13: 1741–1747.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Francesca Signori
    • 1
  • Roberto Solaro
    • 1
  • Emo Chiellini
    • 1
  • Priscilla A. M. Lips
    • 2
  • Pieter J. Dijkstra
    • 2
  • Jan Feijen
    • 2
  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.Dept. of Chemical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations