Biodegradable Hybrid Polymeric Materials Based on Lignin and Synthetic Polymers

  • Andrea Corti
  • Fedele Cristiano
  • Roberto Solaro
  • Emo Chiellini


Environmentally compatible polymeric materials based on the combination of natural components and synthetic polymers are attracting increasing attention. Several contributions have been reported on the preparation of blends and composites based on biodegradable synthetic polymers such as poly(vinyl alcohol) (PVA) and poly(ε-caprolactone) (PCL) with starch1–3, cellulose4,5, and protein materials6,7. Starch gives substantially immiscible blends with PVA8,9, nevertheless a significant improvement in the mechanical properties of the natural polysaccharide has been recorded, thus indicating at least a partial compatibility between starch and the synthetic polymer10,11.


Synthetic Polymer Graft Copolymer Size Exclusion Chromatography Vinyl Alcohol Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Young, A. H., 1967, Polyvinyl alcohol plasticized amylose compositions. US Pat. 3, 312, 641.Google Scholar
  2. 2.
    Otey, F. H., Mark, A. M., Mehltretter, C. L., and Russell, C. R., 1974, Starch-based film for degradable agricultural mulch. Ind. Eng. Chem., Prod. Res. Develop. 13: 90–92.CrossRefGoogle Scholar
  3. 3.
    Averous, L., Moro, L., Dole, P., and Fringant, C., 2000, Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41: 4157–4167.CrossRefGoogle Scholar
  4. 4.
    Nishio, Y., and Manley, R. St, J., 1988, Cellulose/poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21: 1270–1277.CrossRefGoogle Scholar
  5. 5.
    Nishio Y., Haratani, T., and Takahashi, T., 1989, Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer-polymer interaction by melting point depression analysis. Macromolecules 22: 2547–2549.CrossRefGoogle Scholar
  6. 6.
    Chiellini, E., Cinelli, P., Fernandes, E.G., Kenawy, E-R., and Lazzeri, A., 2001, Gelatin based blends and composites. Morphological and thermal mechanical characterization. Biomacromolecules 2: 806–811.CrossRefGoogle Scholar
  7. 7.
    Chiellini, E., Cinelli, P., Corti, A., and Kenawy E-R., 2001, Composite films based on waste gelatin: thermal-mechanical properties and biodegradation testing. Polym. Degr. Stab. 73: 549–555.CrossRefGoogle Scholar
  8. 8.
    Mayer, J. M., and Kaplan, D. L., 1994, Biodegradable materials: balancing degradability and performance. Trends Polym. Sci. 2: 227–235.Google Scholar
  9. 9.
    Okaya, T., Kohno, H., Terada, K., Sato, T., Maruyama, H., and Yamauchi, J., 1992, Specific interaction of starch and polyvinyl alcohols having long alkyl-groups. J. Appl. Polym. Sci. 45: 1127–1134.CrossRefGoogle Scholar
  10. 10.
    Otey, F. H., and Mark, A. M., 1976, Degradable starch-based agricultural mulch film. US Pat. 3, 949, 145.Google Scholar
  11. 11.
    Shogren, R. L., Lawton, J. W., Tiefenbacher, K. F., and Chen, L., 1998, Starch-poly(vinyl alcohol) foamed articles prepared by a baking process. J. Appl. Polym. Sci. 68: 2129–2140.CrossRefGoogle Scholar
  12. 12.
    Stevenson, F. J., 1982, Humus chemistry. Wiley, New York.Google Scholar
  13. 13.
    Kononova, M. M., 1961, Soil organic matter, its nature, its role in soil formation and in soil fertility. Pergamon Press, Oxford.Google Scholar
  14. 14.
    Li, J. C., He, Y., and Inoue, Y., 2001, Study on thermal and mechanical properties of biodegradable blends of poly(epsilon-caprolactone) and lignin. Polymer J. 33: 336–343.CrossRefGoogle Scholar
  15. 15.
    Feldman, D., and Banu, D., 1997, Contribution to the study of rigid PVC polyblends with different lignins. J. Appl. Polym. Sci. 66: 1731–1744.CrossRefGoogle Scholar
  16. 16.
    Corradini, E., Pineda, E. A. G., and Hechenleitner, A. A. W., 1999, Lignin-poly(vinyl alcohol) blends studied by thermal analysis. Polym. Degr. Stab. 66: 199–208.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Mlynár, J., and Sarkanen, S., 1997, The first 85% kraft-lignin based thermoplastics. J. Polym. Sci., Part B: Polym. Phys. 35: 1899–1910.CrossRefGoogle Scholar
  18. 18.
    Ciemnecki, S. L., and Glasser, W. G., 1989, Lignin properties and materials. ACS Symp. Ser. 397: 452–459.CrossRefGoogle Scholar
  19. 19.
    Li, Y., and Sarkanen, S., 2000, Thermoplastics with Very High Lignin Contents. ACS Symp. Ser. 742, 351–366.CrossRefGoogle Scholar
  20. 20.
    Meister, J. J., and Patil, D. R., 1985, Solvent effects and initiation mechanisms for graft polymerization of pine lignin. Macromolecules 18: 1559–1564.CrossRefGoogle Scholar
  21. 21.
    Meister, J. J., and Chen, M. J., 1991, Graft 1-phenylethylene copolymers of lignin. 1. Synthesis and proof of copolymerization. Macromolecules 24: 6843–6848.CrossRefGoogle Scholar
  22. 22.
    Mai, C., Milstein, O., and Huttermann, A., 2000, Chemoenzymatical grafting of acrylamide onto lignin. J. Biotechnol. 79: 173–183.CrossRefGoogle Scholar
  23. 23.
    Hergert, H. L., 1998, Developments in Organosolv Pulping-An Overview. In Environmentally Friendly Technologies for the Pulp and Paper Industry (R. A. Young and M. Akhtar, eds.), Wiley, New York, pp. 5–67.Google Scholar
  24. 24.
    Yabannavar, A. V., and Bartha, R., 1994, Methods for assessment of biodegradability of plastic films in soil. Appl. Environ. Microbiol., 60: 3608–3614.Google Scholar
  25. 25.
    Solaro, R., Corti, A., and Chiellini, E., 1998, A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation. J. Environ. Polym. Degr. 6: 203–208.CrossRefGoogle Scholar
  26. 26.
    Chiellini, E., Corti, A., and Solaro, R., 1999, Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym. Degr. Stab. 64: 305–312.CrossRefGoogle Scholar
  27. 27.
    Bloembergen, S., David. J., Geyer. D., Gustafson, A., Snook, J., and Narayan, R., 1994, Biodegradation and composting studies of polymeric materials. In Biodegradable Plastics and Polymers (Y. Doi and K. Fukuda, eds.): Elsevier, Amsterdam, pp. 601–609.Google Scholar
  28. 28.
    Krupp, L. R., and Jewell, W. J., 1992, Biodegradability of modified plastic films in controlled biological environments. Environ. Sci. Technol. 26: 193–198.CrossRefGoogle Scholar
  29. 29.
    Sawada, H., 1994, Field testing of biodegradable plastics In Biodegradable Plastics and Polymers (Y. Doi and K. Fukuda, eds.): Elsevier, Amsterdam, pp. 298–310.Google Scholar
  30. 30.
    Kimura, M, Toyota, K., Iwatsuki, M., and Sawada, H., 1994, Effects of soil conditions on biodegradation of plastics and responsible microorganisms. In Biodegradable Plastics and Polymers (Y. Doi and K. Fukuda, eds.): Elsevier, Amsterdam, pp. 92–106.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Andrea Corti
    • 1
  • Fedele Cristiano
    • 1
  • Roberto Solaro
    • 1
  • Emo Chiellini
    • 1
  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations