Remodelling of the sarcolemma in diabetic rat hearts: The role of membrane fluidity

  • Barbara Ziegelhöffer-Mihalovičová
  • Iveta Waczulíková
  • Libuša Šikurová
  • Ján Styk
  • Jozef Čársky
  • Attila Ziegelhöffer
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 42)


The hyperglycaemia and oxidative stress, that occur in diabetes mellitus, cause impairment of membrane functions in cardiomyocytes. Also reduced sensitivity to Ca-overload was reported in diabetic hearts (D). This enhanced calcium resistance is based on remodelling of the sarcolemmal membranes (SL) with down-regulated, but from the point of view of kinetics relatively well preserved Na,K-ATPase and abnormal Mg- and Ca-ATPase (Mg/Ca-ATPase) activities. It was hypothesised that in these changes may also participate the non-enzymatic glycation of proteins (NEG) and the related free radical formation (FRF), that decrease the membrane fluidity (SLMF), which is in reversal relationship to the fluorescence anisotropy (D 0.235 ± 0.022; controls (C) 0.185 ± 0.009; p < 0.001). In order to check the true role of SLMF in hearts of the diabetic rats (streptozotocin, single dose, 45 mg/kg i.v.) animals were treated in a special regimen with resorcylidene aminoguanidine (RAG, 4 mg/kg i.m.). The treatment with RAG eliminated completely the diabetes-induced decrease in the SLMF (C 0.185 ± 0.009; D + RAG 0.167 ± 0.013; p < 0.001) as well as in NEG (fructosamine μ of protein: C 2.68 ± 0.14; D 4.48 ± 0.85; D + RAG 2.57 ± 0.14; p < 0.001), and FRF in the SL (malondialdehyde: C 5.3 ± 0.3; D 8.63 ± 0.2; D + RAG 5.61 ± 0.53 μmol.g-1; p < 0.05). Nevertheless, the SL ATPase activity in diabetic animals was not considerably influenced by RAG (increase in D + RAG vs. D 3.3%, p > 0.05). On the other hand, RAG increased considerably the vulnerability of the diabetic heart to overload with external Ca2+ (C 100% of hearts failed, D 83.3%, D + RAG 46.7% of hearts survived). So we may conclude, that: (i) The NEG and FRF caused alterations in SLMF, that accompanied the diabetes-induced remodelling of SL, also seem to participate in the protection of diabetic heart against Ca2+-overload; (ii) Although, the changes in SLMF were shown to influence considerably the ATPase activities in cells of diverse tissues, they seem to be little responsible for changes in ATPases-mediated processes in the SL of chronic diabetic hearts. (Mol Cell Biochem 249: 175–182, 2003)

Key words

diabetic heart membrane fluidity protein glycation calcium tolerance glycoxidation resorcylidene aminoguanidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyons TJ: Glycation and oxidation: A role in the pathogenesis of atherosclerosis. Am J Cardiol 71: 26B–31B, 1993PubMedCrossRefGoogle Scholar
  2. 2.
    Ziegelhöffer A, Ravingerová T, Styk J, Šeboková J, Waczulíková I, Breier A, Džurba A, Volkovová K, Čársky J, Turecký L: Mechanisms that may be involved in calcium tolerance of the diabetic heart. Mol Cell Biochem 176: 191–198, 1997PubMedCrossRefGoogle Scholar
  3. 3.
    Wolff SP: Free radicals and glycation theory. In: R. Ikan (ed). The Maillard Reaction: Consequences for the Chemical and Life Sciences. John Wiley Sons Ltd., 1996, pp 73–88Google Scholar
  4. 4.
    Gennis RB: Biomembranes. Molecular Structure and Function. (Membrane Dynamics and Protein-Lipid Interactions. Interactions of Small Molecules with Membranes: Partitioning, Permeability, and Electrical Effects). Springer Verlag, New York Inc., 1989, pp 166–198, 248-268Google Scholar
  5. 5.
    Ziegelhöffer A, Ravingerová T, Styk J, Tribulová N, Volkovová K, Šeboková J, Breier A: Diabetic cardiomyopathy in rats: Biochemical mechanisms of increased tolerance to calcium. Diabetes Res Clin Pract 31: S93–S103, 1996PubMedCrossRefGoogle Scholar
  6. 6.
    Ravingerová T, Styk J, Pancza D, Tribulová N, Šeboková J, Volkovová K, Ziegelhöffer A, Slezák J: Diabetic cardiomyopathy in rats: Alleviation of myocardial dysfunction caused by Ca2+ overload. Diabetes Res Clin Pract 31: S105–S112, 1996PubMedCrossRefGoogle Scholar
  7. 7.
    Tani M, Neely JR: Hearts from diabetic rats are more resistant to in vitro ischemia: Possible role for altered Ca2+ metabolism. Circ Res 62: 931–940, 1988PubMedCrossRefGoogle Scholar
  8. 8.
    Čársky J, Lazarová M, Beño A: Study of resorcylidene aminoguanidine. I. Spectral and acid-basic properties of the onium compounds. Acta FRN Univ Comen Chimia 26: 89–102, 1978Google Scholar
  9. 9.
    Tinder P: Determination of blood glucose using 4-aminophenazone as oxygen acceptor. J Clin Path 22: 246–253, 1969CrossRefGoogle Scholar
  10. 10.
    Burrin JM, Worth R, Ashworth AA, Curtis S, Alberti KGMM: Automated colorimetric estimation of glycosylated haemoglobin. Clin Chim Acta 106: 45–50, 1980PubMedCrossRefGoogle Scholar
  11. 11.
    Watson D: A simple method for determination of serum cholesterol. Clin Chim Acta 5: 613–615, 1960PubMedCrossRefGoogle Scholar
  12. 12.
    Fossati P, Prencipe L: Serum triglycerides determined colorimetrically with an enzyme that produce hydrogen peroxide. Clin Chim Acta 28: 2077–2080, 1982Google Scholar
  13. 13.
    Vrbjar N, Soos J, Ziegelhöffer A: Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na,K)-ATPase. Gen Physiol Biophys 3: 317–325, 1984PubMedGoogle Scholar
  14. 14.
    Lowry OH, Rosebrough NJ, Farr A, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951PubMedGoogle Scholar
  15. 15.
    Breier A, Ziegelhöffer A, Stankovičová T, Dočolomanský P, Gememiner P, Vrbanová A: Inhibition of (Na,K)-ATPase by electrophilic substances: Functional implications. Mol Cell Biochem 147: 193–196, 1995CrossRefGoogle Scholar
  16. 16.
    Richard MJ, Giraud P, Meo J, Favier A: High performance liquid Chromatographic separation of malondialdehyde-thiobarbituric acid adduct in biological materials (plasma and human cells) using a commercially available reagent. J Chromatogr 577: 9–12, 1992PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson RN, Metcalf PA, Baker JK: Fructosamine: A new approach to estimation of serum glycosyl protein. An index of diabetic control. Clin Chim Acta 127: 87–95, 1983PubMedCrossRefGoogle Scholar
  18. 18.
    Ziegelhöffer A, Ravingerová T, Styk J, Džurba A, Volkovová K,Čársky J, Waczulíková I: Hearts with diabetic cardiomyopathy: Adaptation to calcium overload. Exp Clin Cardiol 3: 158–16?, 1998Google Scholar
  19. 19.
    Bitensky MW, Kowluru A, Kowluru RA: Non-enzymatic glycation and protein recognition. Prog Clin Biol Res 304: 185–203, 1989PubMedGoogle Scholar
  20. 20.
    Brownlee M: Glycosylation products as toxic mediators of diabetic complications. Annu Rev Med 42: 159–166, 1991PubMedCrossRefGoogle Scholar
  21. 21.
    Monnier VM, Gerhardinger C, Marion MS, Taneda S: Novel approaches toward inhibition of the Maillard reaction in vitro: Search, isolation and characterisation of prokaryotic enzymes which degrade glycated substances. In: R.G. Cutler, L. Packer, J. Bertram, A. Mori (eds). Oxidative Stress and Aging. Birkhäuser Verlag, Basel, 1995, pp 141–149CrossRefGoogle Scholar
  22. 22.
    Gries FA, Kolb H, Koschinsky T: Free radicals in the pathogenesis of diabetes mellitus and its complications. In: R.G. Cutler, L. Packer, J. Bertram, A. Mori (eds). Oxidative Stress and Aging. Birkhauser Verlag, Basel, 1995, pp 191–201CrossRefGoogle Scholar
  23. 23.
    Oberly LW: Free radicals and diabetes. Free Radic Biol Med 5: 113–124, 1988CrossRefGoogle Scholar
  24. 24.
    Bagchi M, Prasad MR, Engelman RM, Das DK: Effects of free radicals on the fluidity of myocardial membranes. Free Radic Res Commun 7: 375–380, 1989PubMedCrossRefGoogle Scholar
  25. 25.
    Kennedy AL, Lyons TJ: Glycation, oxidation, and lipoxidation in the development of diabetic complications. Metabolism 46: 14–21, 1997PubMedCrossRefGoogle Scholar
  26. 26.
    Šikurová L, Dérerová J, Kvasnička P, Waczulíková I, Čársky J, UliČná O: Resorcylidene aminoguanidine improves the pathologically reduced fluidity of erythrocyte membranes in diabetes mellitus. Pharmazie 55: 700–701, 2000PubMedGoogle Scholar
  27. 27.
    Waczulíková I, Šikurová L, Čársky J, Štrbová L, Krahulec B: Decreased fluidity of isolated erythrocyte membranes in type 1 and type 2 diabetes. The effect of resorcylidene aminoguanidine. Gen Physiol Biophys 19: 381–392, 2000PubMedGoogle Scholar
  28. 28.
    Winocour PD, Bryszewska M, Watala C, Rand M, Epand RM, Kinlough-Rathbone RL, Packham MA, Mustard FJ: Reduced membrane fluidity in platelets from diabetic patients. Diabetes 39: 241–244, 1990PubMedCrossRefGoogle Scholar
  29. 29.
    Winocour PD, Watala C, Kinlough-Rathbone RL: Membrane fluidity is related to the extent of glycation of proteins, but not to alterations in the cholesterol to phospholipid molar ratio in isolated platelet membranes from diabetic and control subjects. Thromb Haemost 67: 567–571, 1992PubMedGoogle Scholar
  30. 30.
    Mazzanti L, Rabini RA, Fumelli P, Martarelli D, Staffolani R, Salvolini E, Curatola G: Altered platelet membrane dynamic properties in type 1 diabetes. Diabetes 46: 2069–2074, 1997PubMedCrossRefGoogle Scholar
  31. 31.
    Brownlee M, Vlassara H, Kooney T, Ulrich P, Cerami A: Aminoguanidine prevents diabetes-induced arterial wall protein crosslinking. Science 232: 1629–1632, 1986PubMedCrossRefGoogle Scholar
  32. 32.
    Jakuš V, Hrnčarová M, Čársky J, Krahulec B, Rietbrock N: Inhibition of non-enzymatic glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci 65: 1991, 1999PubMedCrossRefGoogle Scholar
  33. 33.
    Pierce GN, Ramjiwan B, Meng H-P: Cardiac sarcolemmal membrane alterations during the diabetic cardiomyopathy. In: M. Nagano, N.S. Dhalla (eds). The Diabetic Heart. Raven Press, New York, 1991, pp 229–236Google Scholar
  34. 34.
    Gotzsche O: Myocardial calcium uptake and catecholamine sensitivity in experimental diabetes. In: M. Nagano, N.S. Dhalla (eds). The Diabetic Heart. Raven Press, New York, 1991, pp 199–207Google Scholar
  35. 35.
    Ziegelhöffer A, Bundgaard H, Ravingerová T, Tribulová N, Enevoldsen MT, Kjeldsen K: Diabetes and semi-starvation-induced changes in metabolism and regulation of NA,K-ATPase in rat heart: A comparative study. Diabetes, Nutrition and Metabolism 2003 (accepted)Google Scholar
  36. 36.
    Sennoune S, Gerbi A, Duran MJ, Grillasca JP, Compe E, Pierre S, Plannels R, Bourdeaux M, Vague P, Pieroni G, Maixent JM: Effect of streptozotocin-induced diabetes on rat liver Na+/K+-ATPase. Eur J Biochem 267: 2071–2078, 2000PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2003

Authors and Affiliations

  • Barbara Ziegelhöffer-Mihalovičová
    • 1
  • Iveta Waczulíková
    • 2
  • Libuša Šikurová
    • 2
  • Ján Styk
    • 1
  • Jozef Čársky
    • 3
  • Attila Ziegelhöffer
    • 1
  1. 1.Institute for Heart ResearchSlovak Academy of SciencesBratislava
  2. 2.Department of Biophysics and Chemical Physics, Faculty of MathematicsPhysics, and Informatics, Comenius UniversityMlynská dolinaBratislava
  3. 3.Department of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of MedicineComenius University, SasinkovaBratislavaSlovak Republic

Personalised recommendations