Skip to main content

A comparison between NMR and GCMS 13C-isotopomer analysis in cardiac metabolism

  • Chapter
Biochemistry of Diabetes and Atherosclerosis

Abstract

NMR spectroscopy and gas chromatography-mass spectrometry (GCMS) have both been used to study cardiac metabolism using substrates labeled with the stable isotope carbon-13. 13C-NMR studies of substrate oxidation are based on the assumption that the 13C-enrichment of glutamate reflects that of 2-ketoglutarate (2-KG). This assumption appears reasonable; however, it has not been thoroughly validated. The higher sensitivity of GCMS enables the direct determination of 13C-enrichment of 2-KG and other tricarboxylic acid (TCA) cycle intermediates. Therefore, using extracts from normal and diabetic hearts perfused with physiological concentrations of unlabeled glucose and 13C-labeled substrates, [3-13C](lactate + pyruvate) and [U-13C]palmitate, we compared the mass isotopomer distribution (MID) of citrate, 2-KG, succinate and malate measured directly by GCMS with that extrapolated from 13C-NMR glutamate isotopomer analysis. A significant correlation between the absolute molar percent enrichments (MPE) of the various mass isotopomers of glutamate determined by 13C-NMR and 2-KG determined by GCMS was observed for all sixteen-heart samples. This correlation was improved if the contribution from unlabeled 2-KG was removed (i.e. relative MPE) indicating that 13C-NMR under estimated the unlabeled fraction. We attribute this discrepancy in the measurement of unlabeled 2-KG to the fact that GCMS measures MO directly, while the NMR analysis calculates it by difference, since unlabeled glutamate is not detected by 13C-NMR spectroscopy. Despite the differences between the two methods, 13C-MID of glutamate determined by NMR provides a simple and reliable indicator of fluxes of 13C-enriched substrates through the TCA cycle. It is also clear that MID analysis of TCA cycle intermediates by GCMS is a sensitive and direct approach to assess substrate selection for citrate synthesis as well as a potential indicator of sites and extent of anaplerosis and/or compartmentation. This study demonstrates that the alliance of NMR and GCMS represents a powerful approach for investigating the control and regulation of cardiac carbon metabolism. (Mol Cell Biochem 249: 105–112, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langendorff O: Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch Gesente Physiol 61: 291–332, 1895

    Article  Google Scholar 

  2. Taegtmeyer H: One hundred years ago: Oscar Langendorff and the birth of cardiac metabolism. Can J Cardiol 11: 1030–1035, 1995

    PubMed  CAS  Google Scholar 

  3. Opie LH: Cardiac metabolism—emergence, decline, and resurgence. Part I. Cardiovasc Res 26: 721–733, 1992

    Article  CAS  Google Scholar 

  4. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG: Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33: 243–257, 1997

    Article  PubMed  CAS  Google Scholar 

  5. Lopaschuk GD, Rebeyka IM, Allard MF: Metabolic modulation: A means to mend a broken heart. Circulation 105: 140–142, 2002

    PubMed  CAS  Google Scholar 

  6. Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH: Substrate metabolism as a determinant for postischemic functional recovery of the heart. Am J Cardiol 80: 3A–10A, 1997

    Article  PubMed  CAS  Google Scholar 

  7. Taegtmeyer H: Six blind men explore an elephant: Aspects of fuel metabolism and the control of tricarboxylic acid cycle activity in heart muscle. Basic Res Cardiol 79: 322–336, 1984

    Article  PubMed  CAS  Google Scholar 

  8. Randle PJ, Garland PB, Hales CN, Newsholme EA, Denton RM, Pogson CI: Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 22: 1–48, 1966

    PubMed  CAS  Google Scholar 

  9. Neely JR, Morgan HE: Substrate and energy metabolism of the heart. Ann Rev Physiol 36: 413–459, 1974

    Article  CAS  Google Scholar 

  10. Hall JL, Stanley WC, Lopaschuk GD, Wisneski JA, Pizzurro RD, Hamilton CD, McCormack JG: Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol Heart Circ Physiol 271: H2320–H2329, 1996

    CAS  Google Scholar 

  11. Goodwin GW, Taylor CS, Taegtmeyer H: Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273: 29530–29539, 1998

    Google Scholar 

  12. Belke DD, Larsen TS, Lopaschuk GD, Severson DL: Glucose and fatty acid metabolism in the isolated working mouse heart. Am J Physiol Regulatory Integrative Comp Physiol 277: R1210–R1217, 1999

    CAS  Google Scholar 

  13. Barr RL, Lopaschuk GD: Methodology for measuring in vitro/ex vivo cardiac energy metabolism. J Pharmacol Toxicol Meth 43: 141–152, 2000

    Article  CAS  Google Scholar 

  14. Magnusson I, Schumann WC, Bartsch GE, Chandramouli V, Kumaran K, Wahren J, Landau BR: Non-invasive tracing of Krebs cycle metabolism in liver. J Biol Chem 266: 6975–6984, 1991

    PubMed  CAS  Google Scholar 

  15. Neurohr KJ, Barrett EJ, Shulman RG: In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80: 1603–1607, 1983

    Article  PubMed  CAS  Google Scholar 

  16. Malloy CR, Sherry AD, Jeffrey FMH: Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett 212: 58–62, 1987

    Article  PubMed  CAS  Google Scholar 

  17. Weiss RG, Chacko VP, Gerstenblith G: Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: The critical role of pyruvate dehydrogenase. J Mol Cell Cardiol 21: 469–478, 1989

    Article  PubMed  CAS  Google Scholar 

  18. Lewandowski ED: Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determination of mitochondrial vs. cytosolic compartmentation. Biochemistry 31: 8916–8923, 1992

    Article  PubMed  CAS  Google Scholar 

  19. Laughlin MR, Taylor J, DeGroot M, Balaban RS: Pyruvate and lactate metabolism in the in vivo dog heart. Am J Physiol Heart Circ Physiol 264: H2068–H2079, 1993

    CAS  Google Scholar 

  20. Chatham JC, Forder JR, Glickson JD, Chance EM: Calculation of absolute metabolic flux and the elucidation of the pathways of glutamate labeling in perfused rat heart by 13C NMR spectroscopy and nonlinear squares analysis. J Biol Chem 270: 7999–8008, 1995

    Article  PubMed  CAS  Google Scholar 

  21. Chatham JC, Gao Z-P, Forder JR: The impact of 1 week of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Physiol Endocrin Metab 277: E342–E351, 1999

    CAS  Google Scholar 

  22. Comte B, Jetté M, Bouchard B, Cordeau S, Des Rosiers C: A 13C-mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J Biol Chem 272: 26125–26131, 1997

    Article  PubMed  CAS  Google Scholar 

  23. Comte B, Vincent G, Bouchard B, Des Rosiers C: Probing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C-labeling of citrate released by perfused rat hearts. J Biol Chem 272: 26117–26124, 1997

    Article  PubMed  CAS  Google Scholar 

  24. Laplante A, Vincent C, Poirier M, Des Rosiers C: Effects and metabolism of fumarate in the perfused rat heart. A13C mass isotopomer study. Am J Physiol Endocrin Met 272: E74–E82, 1997

    CAS  Google Scholar 

  25. Vincent G, Comte B, Poirier M, Des Rosiers C: Citrate release by perfused rat hearts: A window on mitochondrial cataplerosis. Am J Physiol Endocrinol Metab 278: E846–E856, 2000

    PubMed  CAS  Google Scholar 

  26. Panchal AR, Comte B, Huang H, Kerwin T, Darvish A, Des Rosiers C, Brunengraber H, Stanley WC: Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. Am J Physiol Heart Circ Physiol 279: H2390–H2398, 2000

    PubMed  CAS  Google Scholar 

  27. Panchal AR, Comte B, Huang H, Dudar B, Roth B, Chandler M, Des Rosiers C, Brunengraber H, Stanley WC: Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am J Physiol Heart Circ Physiol 281: H1613–H1620, 2001

    PubMed  CAS  Google Scholar 

  28. Jeffrey FMH, Roach JS, Storey CJ, Sherry AD, Malloy CR: 13C Isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300: 192–205, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Chatham JC, Gao ZP, Bonen A, Forder JR: Preferential inhibition of lactate oxidation relative to glucose oxidation in the rat heart following diabetes. Cardiovasc Res 43: 96–106, 1999

    Article  PubMed  CAS  Google Scholar 

  30. Malloy CR, Sherry AD, Jeffrey FMH: Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. Am J Physiol Heart Circ Physiol 259: H987–H995, 1990

    CAS  Google Scholar 

  31. Weiss RG, Gloth ST, Kalil-Filho R, Chacko VP, Stern MD, Gerstenblith G: Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance. Circ Res 70: 392–408, 1992

    Article  PubMed  CAS  Google Scholar 

  32. Lewandowski ED, Doumen C, White LT, LaNoue KF, Damico LA, Yu X: Multiplet structure of 13C NMR signal from glutamate and direct detection of tricarboxylic acid (TCA) cycle intermediates. Magn Reson Med 35: 149–154, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chatham, J.C., Bouchard, B., Des Rosiers, C. (2003). A comparison between NMR and GCMS 13C-isotopomer analysis in cardiac metabolism. In: Gilchrist, J.S.C., Tappia, P.S., Netticadan, T. (eds) Biochemistry of Diabetes and Atherosclerosis. Developments in Molecular and Cellular Biochemistry, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9236-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9236-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4852-8

  • Online ISBN: 978-1-4419-9236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics