Skip to main content

Atherosclerosis and Angiotensin II in Hypercholesterolemia and Diabetes. a Role for at1 Receptors Beyond Hypertension

  • Chapter
  • First Online:
Atherosclerosis, Hypertension and Diabetes

Abstract

The pathophysiological continuum that presumably begins with endothelial injury and dysfunction and ends with the fibronecrotic plaque, occlusive coronary artery disease, and diabetes-related nephropathy is potentially influenced by an association between hyper-glycemia, hypercholesterolemia and activation of the renin-angiotensin system. It is known that the resultant proliferative and progressive responses of the arterial wall in atherosclerosis and glomerulosclerosis are the culmination of the effects of a variety of mitogenic and inhibitory hormonal and trophic factors exerting their actions at stages that may be far removed both spatially and temporally from the initial injurious event. These processes are likely also at work in the diabetic kidney, but are not as well investigated. Regardless of the initiating mechanism, the vascular endothelium, inflammatory cell infiltration and the resultant tissue response have become the focus of attention in the pathogenesis of both atherosclerosis and diabetic nephropathy. A vast array of effects of angiotensin II likely to be mediated through both type 1 and type 2 angiotensin receptors are now described in the literature. Current data indicates that the role of angiotensin II in vascular remodeling and renal injury may originate from a local tissue source rather than the circulation. Regardless of its origin, angiotensin peptides and angiotensin receptors may contribute in significant ways to the atherogenic processes. While the stages of atherosclerosis and renal diabetic nephropathy in humans and animals are well defined morphologically, the mechanisms within vascular and renal tissues that contribute to these pathologies represent a spectrum of events occurring in different microenvironments over prolonged periods. This review describes well-established and novel aspects of angiotensin II-mediated actions as they relate to hypercholesterolemia-induced atherogenesis and diabetic nephropathy, and suggests potential pathways where angiotensin II might be substantially involved through the AT1 receptor in these processes, and thus may be blocked by AT1 receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen S, Tarnow L, Rossing P, Hansen BV, Parving H-H. 2000. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. Kidney International 57:601–606.

    Article  PubMed  CAS  Google Scholar 

  2. Dzau VJ. 2001. Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 37:1047–1052.

    Article  PubMed  CAS  Google Scholar 

  3. Strawn WB, Dean RH, Ferrario CM. 2000. Novel mechanisms linking angiotensin II and early atherogenesis. J. Renin-Angiotensin-Aldosterone System 1:11–17.

    Article  CAS  Google Scholar 

  4. Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM. 2000. Inhibition of early atheroge-nesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation 101:1586–1593.

    Article  PubMed  CAS  Google Scholar 

  5. de Las H, Aragoncillo P, Maeso R, Vazquez-Perez S, Navarro-Cid J, DeGasparo M, Mann J, Ruilope LM, Cachofeiro V, Lahera V 1999. AT(1) receptor antagonism reduces endothelial dysfunction and intimal thickening in atherosclerotic rabbits. Hypertension 34:969–975.

    Article  Google Scholar 

  6. Ferrario CM, Deitch JS, Dean RH, Strawn WB. 1996. Hypertension and atherosclerosis: a mechanistic understanding of disease progression. Cardiovasc Risk Factors 6:1–12.

    Google Scholar 

  7. Fukuhara M, Geary RL, Diz DI, Gallagher PE, Wilson JA, Glazier SS, Dean RH, Ferrario CM. 2000. Angiotensin-converting enzyme expression in human carotid artery atherosclerosis. Hypertension 35:353–359.

    Article  PubMed  CAS  Google Scholar 

  8. Hilgers KF, Mann JFE. 1997. Role of angiotensin II in glomerular injurylessons from experimental and clinical studies. Kidney &. Blood Pressure Research 19:254–262.

    Article  Google Scholar 

  9. Kim S, Iwao H. 2000.-Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacological Reviews 52:11–34.

    PubMed  CAS  Google Scholar 

  10. Dominguez JH, Tang N, Xu W, Evan AP, Siakotos AN, Agarwal R, Walsh J, Deeg M, Pratt JH, March KL, Monnier VM, Weiss MF, Baynes JW, Peterson R. 1999. Studies of renal injury III: lipid-induced nephropathy in type II diabetes. Kidney International 57:92–104.

    Article  Google Scholar 

  11. Grafe M, Auch-Schwelk W, Zakrzewicz A, Regitz-Zagrosek V, Bartsch P, Graf K, Loebe M, Gaehtgens P, Fleck E. 1997.-Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ Res 81:804–811.

    Article  Google Scholar 

  12. Devaraj S, Jialal I. 2000.-Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in type 2 diabetic patients with and without macrovascular complications: the effect of alpha-tocopherol supplementation. Circulation Jul 11;102(2):191–196.

    CAS  Google Scholar 

  13. Frostegard J, Wu R, Haegerstrand A, Patarroyo M, Lefvert AK, Nilsson J. 1993.-Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis 103:213–219.

    CAS  Google Scholar 

  14. Fuhrman B, Judith O, Keidar S, Ben-Yaish L, Kaplan M, Aviram M. 1997.-Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radical Biology & Medicine 23:34–46.

    Article  CAS  Google Scholar 

  15. Keidar S, Attias J, Heinrich R, Coleman R, Aviram M. 1999.-Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 146:249–257.

    Article  PubMed  CAS  Google Scholar 

  16. Keidar S, Attias J, Smith J, Breslow J, Hayek T. 1997. The angiotensin-II receptor antagonist, losartan, inhibits LDL lipid peroxidation and atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Comm 236:622–625.

    Article  PubMed  CAS  Google Scholar 

  17. Wen Y, Scott Y, Liu Y, Gonzales N, Nadler J. 1997. Evidence that angiotensin II and lipoxygenase products activate c-Jun NH2-terminal kinase. Circ Res 81:651–655.

    Article  PubMed  CAS  Google Scholar 

  18. Nickenig G, Sachindis A, Michaelsen F, Böhm M, Seewald S, Vetter H. 1997. Upregulation of vas-cular angiotensin II receptor gene expression by low-density lipoprotein in vascular smooth muscle cells. Circulation 95:473–478.

    Article  PubMed  CAS  Google Scholar 

  19. Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Schölkens BA, Böhm M. 1997. Hypercholes-terolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Physiol 272:H2701–H2707.

    PubMed  CAS  Google Scholar 

  20. Li D, Saldeen T, Romeo F, Mehta JL. 2000. Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultures human coronary artery endothelial cells. Circulation 102:1970.

    Article  PubMed  CAS  Google Scholar 

  21. Burns, KD. 2000. Angiotensin II and its receptors in the diabetic kidney. American Journal of Kidney Diseases 36:449–467.

    PubMed  CAS  Google Scholar 

  22. Wehbi GJ, Zimpelmann J, Carey RM, Levine DZ, Burns KD. 2001. Early streptozotocon-diabetes mellitus downregulates rat kidney AT2 receptors. Am J of Renal Physiol 280:F254–F265.

    CAS  Google Scholar 

  23. Andersen S, Schalkwijk CG, Stehouwer CDA, Parving H-H. 2000. Angiotensin II blockade is associated with decreased plasma leukocyte adhesion molecule levels in diabetic nephropathy. Diabetes Care 23:1031–1032.

    Article  PubMed  CAS  Google Scholar 

  24. Harrison DG. 1994. Endothelial dysfunction in atherosclerosis. Basic Res Cardiol 89:87–102.

    PubMed  CAS  Google Scholar 

  25. Aberg G, Ferrer P. 1990. Effects of captopril on atherosclerosis in cynomolgus monkeys. J Cardiovasc Pharmacol 15:S651–S72.

    Google Scholar 

  26. Beisiegel U, St. Clair R. 1996. An emerging understanding of the interactions of plasma lipoproteins with the arterial wall that leads to the development of atherosclerosis. Curr Op Lipid 7:265–268.

    Article  CAS  Google Scholar 

  27. Cheng JWM, Ngo MN. 1997. Current perspective on the use of angiotensin-converting enzyme inhibitors in the management of coronary (atherosclerotic) artery disease. Ann Pharmacotherapy 31:1499–1506.

    CAS  Google Scholar 

  28. Fennessy PA, Campbell JH, Mendelsohn FAO, Campbell GR. 1996. Angiotensin-converting enzyme inhibitors and atherosclerosis: Relevance of animal models to human disease. Clin Exp Pharmacol Physiol 23:S30–S32.

    Article  PubMed  CAS  Google Scholar 

  29. Thurberg BL, Collins T. 1998. The nuclear factor-kB/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Op Lipid 9:387–396.

    Article  CAS  Google Scholar 

  30. Strawn WB, Gallagher PE, Tallant EA, Ganten D, Ferrario CM. 1999. Angiotensin II A1-receptor blockade inhibits monocyte activation and adherence in transgenic (mRen2)27 rats. J Cardio Pharma 33:341–351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strawn, W.B., Dean, R.H., Ferrario, C.M. (2003). Atherosclerosis and Angiotensin II in Hypercholesterolemia and Diabetes. a Role for at1 Receptors Beyond Hypertension. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics