Skip to main content

Protein Kinase C Signaling and Expression of the Diabetic Cardiac Phenotype

  • Chapter
Atherosclerosis, Hypertension and Diabetes

Abstract

The focus of this review will be recent advances in the molecular biology of protein kinase C (PKC) signaling in cardiac myocytes and the application of these novel techniques to study the pathobiology of diabetic cardiac myopathy. The PKC family of serine/threonine kinases have been implicated in a diverse array of biologic responses in health and disease. Compelling evidence has linked PKC signaling to hyperglycemia mediated cell injury. Although the cardiac myocyte has not been traditionally considered a major target cell for insulin, high ambient concentration of glucose promotes the activation of cardiac PKC isozymes, that target physiologically relevant intracellular substrates. The availability of genetically engineered mice, with targeted activation of distinct PKC isozyme (PKCe) in cardiac muscle cells and the development of selective peptide PKC modulators, provides an approach to examine PKC signaling events in the diabetic heart, and to explore the in vivo and in vitro consequences of this signaling cascade. The rapid growth of knowledge in this area is critical to the development of therapeutic strategies with the potential to arrest or reverse the progression of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Report of the expert committee on the diagnosis and classification of diabetes mellitus. 2000. Diabetes Care 23(Suppl 1):S4–S19.

    Google Scholar 

  2. Garcia MJ, McNamara PM, Gordon T, Kannel WB. 1974. Morbidity and mortality in the Framing-ham population sixteen-year follow-up study. Diabetes 23:105–111.

    PubMed  CAS  Google Scholar 

  3. Kannel WB, McGee DL. 1979. Diabetes and Cardiovascular diseases. The Framingham Heart Study. JAMA 241:2035–2038.

    Article  PubMed  CAS  Google Scholar 

  4. Galderisi M, Anderson KM, Wilson PWF, Levy D. 1991. Echocardiographic Evidence for the Exis-tence of a Distinct Diabetic Cardiomyopathy. (The Framingham Heart Study) Am J Cardiol 68:85–89.

    PubMed  CAS  Google Scholar 

  5. Ruderman NB, Haudenschild C. 1974. Diabetes as an artherogenic factor. Prog Cardiovasc Dis 26:272–412.

    Google Scholar 

  6. Geiss LS, Herman WH, Smith PJ. 1995. In Diabetes in America. National Diabetes Data Group Report. NIDDK, Bethesda, MD, 233–257.

    Google Scholar 

  7. Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz R, Howard BV, Welty TK, Lee ET, Devereux RB. 2001. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 37:1943–1949.

    Article  PubMed  CAS  Google Scholar 

  8. Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA. 2001. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 87:320–323.

    Article  PubMed  CAS  Google Scholar 

  9. Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, Kajstura J. 2000. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II dependent. Lab Invest 80:513–527.

    Article  PubMed  CAS  Google Scholar 

  10. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J. 2001. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375.

    Article  PubMed  CAS  Google Scholar 

  11. Williams B. 1995. Glucose-induced vascular smooth muscle dysfunction: the role of protein kinase CJ Hypertens 13:477–486.

    CAS  Google Scholar 

  12. Hayashi A, Seki N, Hattori A, Kozuma S, Saito T. 1999. PKCv a new member of the protein kinase C family, composes a fourth subfamily with PKC¦Ì. Biochim Biophys Acta 1450:99–106.

    Article  PubMed  CAS  Google Scholar 

  13. Wikman-Coffelt J, Wu ST, Parmley WW, Mason DT. 1991. Angiotensin II and phorbol esters depress cardiac performance and decrease diastolic and systolic Ca2+ in isolated perfused rat hearts. Am Heart J 122:786–794.

    Article  PubMed  CAS  Google Scholar 

  14. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ. 1999. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99:384–391.

    Article  PubMed  CAS  Google Scholar 

  15. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. 1997. Targeted overexpression of protein kinase C β2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A 94:9320–9325.

    Article  PubMed  CAS  Google Scholar 

  16. Barr LF, Campbell SE, Baylin SB. 1997. Protein kinase C-β2 inhibits cycling and decreases cmycinduced apoptosis in small cell lung cancer cells. Cell Growth Differ 8:381–392.

    PubMed  CAS  Google Scholar 

  17. Berra E, Municio MM, Sanz L, Frutos S, Diaz-Meco MT, Moscat J. 1997. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol Cell Biol 17:4346–4354.

    PubMed  CAS  Google Scholar 

  18. Emoto Y, Kisaki H, Manome Y, Kharbanda S, Kufe D. 1996. Activation of protein kinase C¦Ä in human myeloid leukemia cells treated with 1-beta-D-arabinofuranosylcytosine. Blood 87:1990–1996.

    PubMed  CAS  Google Scholar 

  19. Murray NR, Fields AP. 1997. Atypical protein kinase Ct protects human leukemia cells against drug-induced apoptosis. J Biol Chem 272:27521–27524.

    Article  PubMed  CAS  Google Scholar 

  20. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. 1997. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29:859–870.

    Article  PubMed  CAS  Google Scholar 

  21. Ron D, Mochly-Rosen D. 1995. An autoregulatory region in protein kinase C: the pseudoanchoring site. Proc Natl Acad Sci USA 92:492–496.

    Article  PubMed  CAS  Google Scholar 

  22. Rybin VO, Steinberg SF. 1994. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res 74:299–309.

    Article  PubMed  CAS  Google Scholar 

  23. Steinberg SF, Goldberg M, Rybin VO. 1995. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol 27:141–153.

    Article  PubMed  CAS  Google Scholar 

  24. Takeishi Y, Jalili T, Ball NA, Walsh RA. 1999. PKC translocation without changes in Galphaq and PLC-beta protein abundance in cardiac hypertrophy and failure. Am J Physiol 277:H2298–H2304.

    PubMed  Google Scholar 

  25. Naruse K, King GL. 2000. Protein kinase C and myocardial biology and function. Circ Res 86:1104–1106.

    Article  PubMed  CAS  Google Scholar 

  26. Dutil EM, Toker A, Newton AC. 1998. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 8:1366–1375.

    Article  PubMed  CAS  Google Scholar 

  27. Gschwendt M, Leibersperger H, Kittstein W, Marks F. 1992. Protein kinase Cζ and e in murine epidermis. TPA induces down-regulation of PKC ε but not PKC ζ. FEBS Lett 307:151–155.

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi H, Brewer KA, Exton JH. 1993. Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268:13–16.

    PubMed  CAS  Google Scholar 

  29. Liao DF, Monia B, Dean N, Berk BC. 1997. Protein kinase C-ζ, mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J Biol Chem 272:6146–6150.

    Article  PubMed  CAS  Google Scholar 

  30. Haslam RJ, Koide HB, Hemmings BA. 1993. Pleckstrin domain homology. Nature 363:309–310.

    Article  PubMed  CAS  Google Scholar 

  31. Mayer BJ, Ren R, Clark KL, Baltimore D. 1993. A putative modular domain present in diverse signaling proteins. Cell 73:629–630.

    Article  PubMed  CAS  Google Scholar 

  32. Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E. 1994. PH domain: the first anniversary. Trends Biochem Sci 19:349–353.

    Article  PubMed  CAS  Google Scholar 

  33. Lemmon MA, Ferguson KM, Schlessinger J. 1996. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624.

    Article  PubMed  CAS  Google Scholar 

  34. Souroujon MC, Mochly-Rosen D. 1998. Peptide modulators of protein-protein interactions in intracellular signaling. Nat Biotechnol 16:919–924.

    Article  PubMed  CAS  Google Scholar 

  35. Takeishi Y, Jalili T, Ball NA, Walsh KA. 1999. Responses of cardiac protein kinase C isoforms to distinct pathological stimuli are differentially regulated. Circ Res 85:264–271.

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues B, Cam MC, McNeill JH. 1998. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180:53–57.

    Article  PubMed  CAS  Google Scholar 

  37. Rodrigues B, McNeill JH. 1992. The diabetic heart: Metabolic causes for the development of a cardiomyopathy. Cardiovasc Res 26:913–922.

    Article  PubMed  CAS  Google Scholar 

  38. Bell DSH. 1995. Diabetic cardiomyopathy: A unique entity or a complication of coronary artery disease? Diabetes Care 18:708–714.

    Article  PubMed  CAS  Google Scholar 

  39. Malhotra A, Kang BPS, Cheung S, Opawumi D, Meggs LG. 2001. Angiotensin II promotes glucoseinduced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 50:1918–1926.

    Article  PubMed  CAS  Google Scholar 

  40. Inoguchi T, Battan R. Handler E, Sportsman JR, Heath W, King GL. 1992. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: Differentail reversiblity to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 89:11059–11063.

    Article  PubMed  CAS  Google Scholar 

  41. Malhotra A, Reich D, Nakouzi A, Sanghi V, Geenen DL, Buttrrick PM. 1997. Experimental diabetes is associated with functional activation of protein kinase C¦Å and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 81:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  42. Giles TD, Ouyang J, Kerut EK, Given MB, Allen GE, Mcllwain EF, Greenberg SS. 1998. Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307.

    PubMed  CAS  Google Scholar 

  43. Kang N, Alexander G, Park JK, Maasch C, Buchwalow I, Luft FC, Haller H. 1999. Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats. Kidney Int 56:1737–1750.

    Article  PubMed  CAS  Google Scholar 

  44. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heat WF, Stramm LE, Feener EP, King GL. 1996. Amelioration of vascular dysfunction in diabetic rats by an oral PKC¦Â inhibitor. Science 272:728–731.

    Article  PubMed  CAS  Google Scholar 

  45. Haller H, Baur E, Quass P, Behrend M, Lindschau C, Distler A, Luft FC. 1995. High glucose concentrations and protein kinase C isoforms in vascular smooth muscle cells. Kidney Int 47:1057–1067.

    Article  PubMed  CAS  Google Scholar 

  46. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. 1993. Correlation of diacylglycerol level and protein kinase C activity in rat retinal circulation. Am J Physiol 265:E783–E793.

    PubMed  CAS  Google Scholar 

  47. Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. 1994. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactocemia. Diabetes, 43:1122–1129.

    Article  PubMed  CAS  Google Scholar 

  48. Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI. 1991. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol 261:F571–F577.

    PubMed  CAS  Google Scholar 

  49. Gu X, Bishop SP. 1994. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ Res 75:926–931.

    Article  PubMed  CAS  Google Scholar 

  50. Goldberg M, Zhang HL, Steinberg SF. 1997. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. J Clin Invest 99:55–61.

    Article  PubMed  CAS  Google Scholar 

  51. Mochly-Rosen D, Wu G, Hahn H, Osinska H, Liron T, Lorenz JN, Yatani A, Robbins J, Dorn GW II. 2000. Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKC epsilon translocation. Circ Res 86:1173–1179.

    Article  PubMed  CAS  Google Scholar 

  52. Gray MO, Karliner JS, Mochly-Rosen D. 1997. A selective ¦Å-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J Biol Chem 272:30945–30951.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang T, Kuznetsov V, Pak E, Zhang H, Robinson RB, Steinberg SF. 1996. Thrombin receptor actions in neonatal rat ventricular myocytes. Circ Res 78:553–563.

    Article  PubMed  CAS  Google Scholar 

  54. Sadoshima J, Izumo S. 1993. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692.

    PubMed  CAS  Google Scholar 

  55. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. 2000. Normalizing mitochondrial superoxide overproduction blocks three pathways of hyperglycemic damage. Nature 404:787–790.

    Article  PubMed  CAS  Google Scholar 

  56. Lando D, Pongratz I, Whitelaw ML. 2000. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor [HIF] 18 abd the HIF-like factor. J Biol Chem 275:4618–4627.

    Article  PubMed  CAS  Google Scholar 

  57. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. 1998. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin angiotensin system and decreases the Bcl-2-to-Bax ratio in the cell. J Clin Invest 101:1326–1342.

    Article  PubMed  CAS  Google Scholar 

  58. Mochly-Rosen D, Gordon AS. 1998. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 12:35–42.

    PubMed  CAS  Google Scholar 

  59. Mochly-Rosen D. 1995. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268:247–251.

    Article  PubMed  CAS  Google Scholar 

  60. Kobe B, Heirerhorst J, Kemp BE. 1997. Intrasteric regulation of protein kinases. Adv Sec Mess Phosphoprot Res 31:29–40.

    Article  CAS  Google Scholar 

  61. Johnson JA, Gray MO, Chen CH, Mochly-Rosen D. 1996. A protein kinase C translocation inhibitor as an isozyme-selective antagonsit of cardiac function. J Biol Chem 271:24962–24966.

    Article  PubMed  CAS  Google Scholar 

  62. Malhotra A, Kang BPS, Opawumi D, Belizaire W, Meggs LG. 2001. Molecular biology of protein kinase C signaling in cardiac myocytes. Mol Cell Biochem 225:97–107.

    Article  PubMed  CAS  Google Scholar 

  63. Dorn GW 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D. 1999. Sustained in vivo cardiac protection by a rationally designed peptide that causes £ protein kinase C translocation. Proc Natl Acad Sci USA 96:12798–12803.

    Article  PubMed  CAS  Google Scholar 

  64. Trilivas I, McDonough PM, Brown JH. 1991. Dissociation of protein kinase C redistribution from the phosphorylation of its substrates. J Biol Chem 266:8431–8438.

    PubMed  CAS  Google Scholar 

  65. Takeishi Y, Chu G, Kirkpatrick DM, Li Z, Wakasaki H, Kranias EG, King GL, Walsh RA. 1998. In vivo phosphorylation of cardiac troponin I by protein kinase C¦Â2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J Clin Invest 102:72–78.

    Article  PubMed  CAS  Google Scholar 

  66. Jideama NM, Noland TA Jr, Raynor RL, Blobe GC, Fabbro D, Kazanietz MG, Blumberg PM, Hannun YA, Kuo JF. 1996. Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem 271:23277–23283.

    Article  PubMed  CAS  Google Scholar 

  67. Goto M, Cohen MV, Downey JM. 1996. The role of protein kinase C in ischemic preconditioning. Ann NY Acad Sci 793:177–190.

    Article  PubMed  CAS  Google Scholar 

  68. Clerk A, Sugden PH. 2001.Untangling the web: Specific signaling form PKC isoforms to MAPK cascades. Circ Res. 89:847–849.

    PubMed  CAS  Google Scholar 

  69. Heidkamp MC, Bayer AL, Martin JL, Samarel AM. 2001.Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C E and 8 in neonatal rat ventricular myocytes. Circ Res 89:882–890.

    Article  PubMed  CAS  Google Scholar 

  70. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassille E, Romano G, Calabretts B, Baserga R. 1999. Multiple signaling pathways of the insulin-like growth factor in protection form apoptosis. Mol Cell Biol 19:7203–7215.

    PubMed  CAS  Google Scholar 

  71. Ruderman JV. 1993. MAP kinase and the activation of quiescent cells. Curr Opin Cell Biol 5:207–213.

    Article  PubMed  CAS  Google Scholar 

  72. Zhengui X, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. 1995. Opposing effects of ERK and JNK-p38 MAP kinases. Science 24:1326–1331.

    Google Scholar 

  73. Ito T, Deng X, Carr B, May WS. 1997. Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671–11673.

    Article  PubMed  CAS  Google Scholar 

  74. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ. 1997. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating MAP kinase phosphatse-1 and induces apoptosis. J Biol Chem 272:19022–19026.

    Article  PubMed  CAS  Google Scholar 

  75. Wang Y, Hyang S, Sah VP, Ross J, Brown JH, Han H, Chien K. 1998. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p39 MAP kinse family. J Biol Chem 273:2161–2168.

    Article  PubMed  CAS  Google Scholar 

  76. Kummer JL, Pravin KR, Heidenreich KA. 1997. Apoptosis induced by withdrawral of trophic factors is mediated by p38 MAP kinase. J Biol Chem 272:20490–20494.

    Article  PubMed  CAS  Google Scholar 

  77. Akao M, Ohler A, O’Rourke B, Marban E. 2001. Mitochondrial ATP sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  78. Wang Y, Kyoji H, Ashraf M. 1999. Activation of mitochondrial ATP-sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res 85:731–741.

    Article  PubMed  CAS  Google Scholar 

  79. Takashi E, Wang Y, Ashraf M. 1999. Activation of mitochondrial KATP channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res 85:1146–1153.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kang, B.P.S., Fasipe, B., Broadway, K., Chegounchi, M., Meggs, L.G., Malhotra, A. (2003). Protein Kinase C Signaling and Expression of the Diabetic Cardiac Phenotype. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics