Skip to main content

Regulation of Cardiac Function in Diabetes

  • Chapter
  • First Online:
Atherosclerosis, Hypertension and Diabetes

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

Abstract

Phosphorylation and dephosphorylation of various subcellular target sites are known to regulate heart function, metabolism and cation homeostasis. Since cardiac func-tion, sarcoplasmic reticulum Ca2+-pump and myofibrillar ATPase activities in chronic diabetes are depressed, it is likely that changes in phosphorylation and/or dephosphorylation pro-cesses may explain the abnormalities in the diabetic heart. It is now well known that the phosphorylation-dephosphorylation system plays a major role in determining the activities of subcellular organelles in the myocardium. In view of the involvement of protein kinases and protein phosphatases in phosphorylation and dephosphorylation, it is possible that changes in subcellular activities in the diabetic heart are associated with alterations in the activities of these enzymes. This review describes the regulation of Ca2+-movement and cardiac dysfunc-tion in diabetes mellitus, and how protein kinases and protein phosphatases are involved in the regulation of cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherwin RS. 2000. Diabetes mellitus. In: Cecil Textbook of Medicine, 21st ed. Ed. JC Bennet and L Goldman. Philadelphia, PA: WB. Saunders, pp. 1263–1285.

    Google Scholar 

  2. Unger RH, Foster DW. 1998. Diabetes mellitus. In: Williams Textbook of Endocrinology, 9th ed. Ed. JD Wilson, DW Foster, HM Kronenberg and P Reed Larsen. Philadelphia, PA: W.B. Saunders, pp. 973–1058.

    Google Scholar 

  3. Chudley AE. 1999. Genetic landmarks through philately—a brief history of diabetes mellitus. Clin Genet 55:231–233.

    Article  PubMed  CAS  Google Scholar 

  4. Onat T. 1997. The history of endocrinology in philately. J Pediatr Endocrinol Metab 10:371–377.

    Article  PubMed  CAS  Google Scholar 

  5. Wilson T. 1997. Diabetes in philately. American Philately 44–46.

    Google Scholar 

  6. Bliss M. 1982. Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull Hist Med 56:554–568.

    PubMed  CAS  Google Scholar 

  7. Schadewaldt H. The history of diabetes mellitus. In: Diabetes: Its Medical and Cultural History. Ed. D Van Engelhardt. Berlin, Germany: Springer Verlag, pp. 43–100.

    Google Scholar 

  8. National Diabetes Data Group. 1979. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28:1039–1057.

    Google Scholar 

  9. WHO Expert Committee on Diabetes Mellitus. 1980. Second Report. WHO Tech Rep Ser 68:122–133.

    Google Scholar 

  10. Craig JW 1980. Clinical implications of the new diabetes classification. Postgrad Med 68:122–133.

    PubMed  CAS  Google Scholar 

  11. Klassen GA, Tanser PH, Marpole D, Agarwal JB. 1973. Adaptation of the coronary circulation to primary myocardial disease. Rec Adv Cardiac Struct Metab 3:497–506.

    CAS  Google Scholar 

  12. Christlieb AR. 1973. Diabetes and hypertensive vascular disease. Am J Cardiol 32:592–606.

    Article  PubMed  CAS  Google Scholar 

  13. Christlieb AR, Warram JH, Krolewsky AS, Busick EJ, Ganda OP, Asmal AC, Soeldner JS, Bradley RF. 1981. Hypertension: the major risk factor in juvenile-onset insulin dependent diabetics. Diabetes 30 (Suppl. 2):90–96.

    PubMed  CAS  Google Scholar 

  14. Factor SM, Borczuk A, Charron MJ, Fein FS, van Hoeven KH, Sonnenblick EH. 1996. Myocar-dial alterations in diabetes and hypertension. Diabetes Res Clin Pract 31 (Supp. l):S133–S142.

    Article  PubMed  Google Scholar 

  15. Semplicini A, Ceolotto G, Massimino M, Valle R, Serena L, De Toni R, Pessina AC, Dal Palu C. 1994. Interactions between insulin and sodium homeostasis in essential hypertension. Am J Med Sci 307 (Suppl. 1):S43–S46.

    Article  PubMed  Google Scholar 

  16. Pollare T, Lithell H, Berne C. 1989. A comparison of the effects of hydrochlorothiazide and cap-topril on glucose and lipid metabolism in patients with hypertension. N Engl J Med 321:868–873.

    Article  PubMed  CAS  Google Scholar 

  17. Kodama J, Katayama S, Tanaka K, Itabashi A, Kawazu S, Ishii J. 1990. Effect of captopril on glucose concentration: Possible role of augmented postprandial forearm blood flow. Diabetes Care 13:1109–1111.

    Article  PubMed  CAS  Google Scholar 

  18. Talseth T, Westlie L, Daae L. 1991. Doxazosin and atenolol as monotherapy in mild and moderate hypertension: A randomized, parallel study with a three-year follow-up. Am Heart J 121:280–285.

    Article  PubMed  CAS  Google Scholar 

  19. Pell S, D’Alonzo CA. 1963. Acute myocardial infarction in a large industrial population. JAMA 185:831–838.

    Article  PubMed  CAS  Google Scholar 

  20. Goldenberg S, Alex M, Blumenthal HT. 1958. Sequelae of arteriosclerosis of the aorta and coro-nary arteries. Diabetes 7:98–108.

    PubMed  CAS  Google Scholar 

  21. Herlitz J, Malmberg K, Karlson BW, Ryden L, Hjalmarson A. 1988. Mortality and morbidity during a five-year follow-up of diabetics with myocardial infarction. Acta Med Scand 224:31–38.

    Article  PubMed  CAS  Google Scholar 

  22. Dhalla NS, Pierce GN, Innes IR, Beamish RE. 1985. Pathogenesis of cardiac dysfunction in dia-betes mellitus. Can J Cardiol 1:263–281.

    PubMed  CAS  Google Scholar 

  23. Partamian JO, Bradley RE 1965. Acute myocardial infarction in 258 cases of diabetes. Immediate mortality and 5 year survival. N Engl J Med 273:455–461.

    Article  PubMed  CAS  Google Scholar 

  24. Stone PH, Muller JE, Hartwell T, York BJ, Rutherford JD, Parker CB, Turi ZG, Strauss HW, Willerson JT, Robertson T, et al. 1989. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS Study Group. J Am Coll Cardiol 14:49–57.

    Article  CAS  Google Scholar 

  25. Clark RS, English M, McNeill GP, Newton RW. 1985. Effect of intravenous infusion of insulin in diabetics with acute myocardial infarction. Br Med J 291:303–305.

    Article  CAS  Google Scholar 

  26. Faerman I, Faccio E, Milei J, Nunez R, Jadzinsky M, Fox D, Rapaport M. 1977. Autonomic neuropathy and painless myocardial infarction in diabetic patients. Histologic evidence of their relationship. Diabetes 26:1147–1158.

    Article  PubMed  CAS  Google Scholar 

  27. Niakan E, Harati Y, Rolak LA, Comstock JP, Rokey R. 1986. Silent myocardial infarction and diabetic cardiovascular autonomic neuropathy. Arch Intern Med 146:2229–2230.

    Article  PubMed  CAS  Google Scholar 

  28. Theron HD, Steyn AF, du Raan HE, Bennett JM, de Wet JI. 1987. Autonomic neuropathy and atyp-ical myocardial infarction in a diabetic clinic population. S Afr Med J 72:253–254.

    PubMed  CAS  Google Scholar 

  29. Soler NG, Bennett MA, Pentecost BL, Fitzgerald MG, Malins JM. 1975. Myocardial infarction in diabetes. Q J Med 44:125–132.

    PubMed  CAS  Google Scholar 

  30. Robinson JW. 1952. Coronary thrombosis in diabetes mellitus. New Engl J Med 246:332–335.

    Article  PubMed  CAS  Google Scholar 

  31. Shortleff D. 1974. Some characteristics related to the incidence of cardiovascular disease and death: Framingham study 18-year follow up. Washington, DC: Government Printing Office, Section 30.

    Google Scholar 

  32. Kannel WB, McGee DL. 1979. Diabetes and cardiovascular disease. JAMA 241:2035–2038.

    Article  PubMed  CAS  Google Scholar 

  33. Kannel WB, Hjortland M, Castelli WP. 1974. Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol 34:29–34.

    Article  PubMed  CAS  Google Scholar 

  34. Abbott RD, Donahue RP, Kannel WB, Wilson PW 1988. The impact of diabetes on survival fol-lowing myocardial infarction in men and women. The Framingham study. JAMA 260:3456–3460.

    Article  PubMed  CAS  Google Scholar 

  35. Savage MP, Krolewski AS, Kenien GC, Lebeis MP, Christlieb AR, Lewis SM. 1988. Acute myocar-dial infarction in diabetes mellitus and significance of congestive heart failure as a prognostic factor. Am J Cardiol 62:665–669.

    Article  PubMed  CAS  Google Scholar 

  36. Sternby NH. 1968. Atherosclerosis and diabetes mellitus. Acta Pathol Microbial Scand 194 (Suppl):152–164.

    Google Scholar 

  37. Winocour PD, Halushka PV, Colwell JA. 1985. Platelet involvement in diabetes mellitus. In: The Platelets: Physiology and Pharmacology. Ed. GL Longenecker. Orlando, FL: Academic Press, pp. 341–366.

    Google Scholar 

  38. Sugimoto H, Franks DJ, Lecavalier L, Chiasson JL, Hamet P. 1987. Therapeutic modulation of growth promoting activity in platelets from diabetics. Diabetes 36:667–672.

    Article  PubMed  CAS  Google Scholar 

  39. Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA. 1994. Platelet plasminogen activator inhibitor-1 in patients with type II diabetes mellitus. Diabetes Care 17:818–823.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia MJ, McNamara PM, Gordon T, Kannel WB. 1974. Morbidity and mortality in diabetes in the Framingham study. Diabetes 23:105–111.

    PubMed  CAS  Google Scholar 

  41. Pulsinelli WA, Levey DE, Sigsbee B, Sherer P, Plum F. 1983. Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:540–544.

    Article  PubMed  CAS  Google Scholar 

  42. Weinberger J, Biscarra V,Weisberg MK, Jacobson JH. 1983. Factors contributing to stroke in patients with atherosclerotic disease of the great vessels: the role of diabetes. Stroke 14:709–714.

    Article  PubMed  CAS  Google Scholar 

  43. McCall AL. 1990. The impact of diabetes on the CNS. Diabetes 41:557–570.

    Article  Google Scholar 

  44. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmed MR, Haider B. 1977. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:885–899.

    Article  Google Scholar 

  45. Beuckelmann DJ, Wier WG. 1988. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol (Lond) 405:233–255.

    CAS  Google Scholar 

  46. du Bell WH, Houser SR. 1989. Voltage and beat dependence of Ca2+ transient in feline ventricu-lar myocytes. Am J Physiol 257:H746–H759.

    Google Scholar 

  47. London B, Krueger JW. 1986. Contraction in voltage-clamped, internally perfused single heart cells. J Gen Physiol 88:475–505.

    Article  PubMed  CAS  Google Scholar 

  48. Niggli E, Lederer WJ. 1990. Voltage-independent calcium release in heart muscle. Science 250:565–568.

    Article  PubMed  CAS  Google Scholar 

  49. Hobai IA, Bates JA, Howarth FC, Levi AJ. 1997. Inhibition by external Cd2+ of Na/Ca exchange and L-type Ca channel in rabbit ventricular myocytes. Am J Physiol 272:H2164–H2172.

    PubMed  CAS  Google Scholar 

  50. Leblanc N, Hume JR. 1990. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376.

    Article  PubMed  CAS  Google Scholar 

  51. Levi AJ, Brooksby P, Hancox JC. 1993. One hump or two? The triggering of calcium release from the sarcoplasmic reticulum and the voltage dependence of contraction in mammalian cardiac muscle. Cardiovasc Res 27:1743–1757.

    Article  PubMed  CAS  Google Scholar 

  52. Levi AJ, Li J, Spitzer KW, Bridge JH. 1996. Effect on the indo-1 transient of applying Ca channel blocker for a single beat in voltage-clamped guinea-pig cardiac myocytes. J Physiol (Lond) 494:653–673.

    CAS  Google Scholar 

  53. Lipp P, Niggli E. 1994. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 474:439–446.

    CAS  Google Scholar 

  54. Bers DM. 1985. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol 248:H366–H381.

    PubMed  CAS  Google Scholar 

  55. Fabiato A, Fabiato F. 1977. Calcium release from the sarcoplasmic reticulum. Circ Res 40:119–129.

    Article  PubMed  CAS  Google Scholar 

  56. Cannell MB, Berlin JR, Lederer WJ. 1987. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  57. Nabauer M, Callewaert G, Cleemann L, Morad M. 1989. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803.

    Article  PubMed  CAS  Google Scholar 

  58. Balke CW, Egan TM, Wier WG. 1994. Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J Physiol (Lond) 474:447–462.

    CAS  Google Scholar 

  59. Bassani JW, Bassani KA, Bers DM. 1993. Ca2+ cycling between sarcoplasmic reticulum and mito-chondria in rabbit cardiac myocytes. J Physiol (Lond) 460:603–621.

    CAS  Google Scholar 

  60. Bers DM, Bassani JW, Bassani RA. 1993. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes. Cardiovasc Res 27:1772–1777.

    Article  PubMed  CAS  Google Scholar 

  61. Barcenas-Ruiz L, Beuckelmann DJ,Wier WG. 1987. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science 238:1720–1722.

    Article  PubMed  CAS  Google Scholar 

  62. Hobai IA, Howarth FC, Pabbathi VK, Dalton GR, Hancox JC, Zhu JQ, Howlett SE, Ferrier GR, Levi AJ. 1997. “Voltage-activated Ca release” in rabbit, rat and guinea-pig cardiac myocytes, and modulation by internal cAMP. Pflugers Arch 435:164–173.

    Google Scholar 

  63. Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. 1986. Sequence analysis of phos-pholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261:13333–13341.

    PubMed  CAS  Google Scholar 

  64. Davis BA, Schwartz A, Samaha FJ, Kranias EG. 1983. Regulation of cardiac sarcoplasmic reti-culum calcium transport by calcium-calmodulin-dependent phosphorylation. J Biol Chem 258:13587–13591.

    PubMed  CAS  Google Scholar 

  65. Kirchberger MA, Antonetz T. 1982. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem 257:5685–5691.

    PubMed  CAS  Google Scholar 

  66. Kranias EG, Mandel F, Wang T, Schwartz A. 1980. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3’,5’-monophosphate dependent protein kinase. Biochemistry 19:5434–5439.

    Article  PubMed  CAS  Google Scholar 

  67. Movsesian MA, Nishikawa M, Adelstein RS. 1984. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem 259:8029–8032.

    PubMed  CAS  Google Scholar 

  68. Tada M, Inui M. 1983. Regulation of calcium transport by the ATPase-phospholamban system. J Mol Cell Cardiol 15:565–575.

    Article  PubMed  CAS  Google Scholar 

  69. Kranias EG. 1985. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 260:11006–11010.

    PubMed  CAS  Google Scholar 

  70. Steenaart NA, Ganim JR, Di Salvo J, Kranias EG. 1992. The phospholamban phosphatase asso-ciated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys 293:17–24.

    Article  PubMed  CAS  Google Scholar 

  71. Kranias EG, Di Salvo J. 1986. A phospholamban protein phosphatase activity associated with cardiac sarcoplasmic reticulum. I Biol Chem 261:10029–10032.

    CAS  Google Scholar 

  72. Kranias EG, Steenaart NA, Di Salvo J. 1988. Purification and characterization of phospholamban phosphatase from cardiac muscle. J Biol Chem 263:15681–15687.

    PubMed  CAS  Google Scholar 

  73. Hamby RI, Zoneraich S, Sherman L. 1974. Diabetic cardiomyopathy. JAMA 229:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  74. D’Elia JA, Weinrauch LA, Healy RW, Libertino RW, Bradley RF, Leland OS. 1979. Myocardial dys-function without coronary artery disease in diabetic renal failure. Am J Cardiol 43:193–199.

    Article  PubMed  Google Scholar 

  75. Shapiro LM, Leatherdale BA, Coyne ME, Fletcher RF, Mackinnon J. 1980. Prospective study of heart disease in untreated maturity onset diabetics. Br Heart J 44:342–348.

    Article  PubMed  CAS  Google Scholar 

  76. Rubier S, Sajadi MRM, Araoye MA, Holford MD. 1978. Noninvasive estimation of myocardial per-formance in patients with diabetes. Diabetes 27:127–134.

    Google Scholar 

  77. Shapiro LM, Howat AP, Calter MM. 1981. Left ventricular function in diabetes mellitus. I. Method-ology and prevalence and spectrum of abnormalities. Br Heart J 45:122–128.

    Article  PubMed  CAS  Google Scholar 

  78. Garrard CL, Weissler AM, Dodge HT. 1970. The relationship of alterations in systolic time inter-vals to ejection fraction in patients with cardiac disease. Circulation 42:455–462.

    Article  PubMed  Google Scholar 

  79. Goldweit RS, Borer JS, Jovanovic LG, Drexler AJ, Hochreiter CA, Devereux RB, Peterson CM. 1985. Relation of hemogloblin Al and blood to cardiac function in diabetes mellitus. Am J Cardiol 56:642–650.

    Article  PubMed  CAS  Google Scholar 

  80. Uusitupa M, Siitonen O, Aro A, Korhonen T, Pyorala K. 1983. Effect of correction of hyperglycemia on left ventricular function in non-insulin-dependent (Type 2) diabetics. Acta Med Scand 213: 363–368.

    Article  PubMed  CAS  Google Scholar 

  81. Abenavoli T, Rubier S, Fisher VJ, Axelrod H, Zuckerman KP. 1981. Exercise testing with myocar-dial scintigraphy in asymptomatic diabetic males. Circulation 63:54–64.

    Article  PubMed  CAS  Google Scholar 

  82. Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW. 1988. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed doppler echocardiography. J Am Coll Cardiol 12:114–120.

    Article  PubMed  CAS  Google Scholar 

  83. Raev DC. 1994. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 17:633–639.

    Article  PubMed  CAS  Google Scholar 

  84. Ruddy TD, Shumak SL, Liu PP, Barme AN, Seawright SJ, McLaughlin PR, Zinman B. 1988. The relationship of cardiac diastolic dysfunction to concurrent hormonal and metabolic status in type I diabetes mellitus. J Clin Endocrinol Metab 66:113–118.

    Article  PubMed  CAS  Google Scholar 

  85. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. 1983. Defective sarcoplasmic reticular calcium trans-port in diabetic cardiomopathy. Am J Physiol 244:E528–E535.

    PubMed  CAS  Google Scholar 

  86. Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenbhck EH. 1980. Altered myocardial mechanics in diabetes rats. Circ Res 47:922–933.

    Article  PubMed  CAS  Google Scholar 

  87. Bhimji S, Godin DV, McNeill JH. 1985. Biochemical and functional changes in hearts from rabbits with diabetes. Diabetologia 28:452–457.

    Article  PubMed  CAS  Google Scholar 

  88. Biebfeld DR, Pace CS, Boshell BR. 1983. Altered sensitivity of chronic diabetic rat heart to calcium. Am J Physiol 245:E560–E567.

    Google Scholar 

  89. Fein FS, Miller-Green B, Sonnenblick EH. 1985. Altered myocardial mechanics in diabetic rabbits. Am J Physiol 248:H729–H736.

    PubMed  CAS  Google Scholar 

  90. Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dhalla NS. 1982. Cardiac alpha-and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 77:610–618.

    Article  PubMed  CAS  Google Scholar 

  91. Afzal N, Ganguly PK, Dhalla KS, Pierce GN, Singal PK, Dhalla NS. 1988. Beneficial effects of ver-apamil in diabetic cardiomyopathy. Diabetes 37:936–942.

    Article  PubMed  CAS  Google Scholar 

  92. Haider B, Ahmed SS, Moschos CB, Oldewurtel HA, Regan TJ. 1977. Myocardial function and coronary blood flow response to acute ischemia in chronic canine diabetes. Circ Res 40:577–583.

    Article  PubMed  CAS  Google Scholar 

  93. Ku DD, Sellers BM. 1982. Effects of streptozotocin diabetes and insulin treatment on myocardial sodium pump and contractility of the rat heart. J Pharmacol Exp Ther 222:395–400.

    PubMed  CAS  Google Scholar 

  94. Ingebretsen CG, Moreau P, Hawelu-Johnson C, Ingebretsen WR. 1980. Performance of diabetic rat hearts: Effects of anoxia and increased work. Am J Physiol 239.H614–H620.

    PubMed  CAS  Google Scholar 

  95. Tahliani AG, Vadlamudi RVSV, McNeill JH. 1983. Prevention and reversal of altered myocardial function in diabetic rats by insulin treatment. Can J Physiol Pharmacol 61:516–523.

    Article  Google Scholar 

  96. Vadlamudi RVSV, Rodgers RL, McNeill JH. 1982. The effect of chronic alloxan-and streptozotocin-induced diabetes on isolated rat heart performance. Can J Physiol Pharmacol 60:902–911.

    Article  PubMed  CAS  Google Scholar 

  97. Penpargkul S, Schaible T, Yipintsoi T, Scheuer J. 1980. The effect of diabetes on performance and metabolism of rat hearts. Circ Res 47:911–921.

    Article  PubMed  CAS  Google Scholar 

  98. Fein FS, Strobeck JE, Malhotra A, Scheuer J, Sonnenblick EH. 1981. Reversibility of diabetic car-diomyopathy with insulin in rats. Circ Res 49:1251–1261.

    Article  PubMed  CAS  Google Scholar 

  99. Reagan TJ, Wu CF, Yeh CK, Oldewurtel HA, Haider B. 1981. Myocardial composition and func-tion in diabetes: The effects of chronic insulin use. Circ Res 49:1268–1277.

    Article  Google Scholar 

  100. Schaible TF, Malhotra A, Bauman WA, Scheuer J. 1983. Left ventricular function after chronic insulin treatment in diabetic and normal rats. J Mol Cell Cardiol 15:445–458.

    Article  PubMed  CAS  Google Scholar 

  101. Dillmann WH. 1982. Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31:199–204.

    Article  PubMed  CAS  Google Scholar 

  102. Saunders J, Hall SEH, Sonksen PH. 1978. Thyroid hormones in insulin requiring diabetes before and after treatment. Diabetologia 15:29–35.

    Article  PubMed  CAS  Google Scholar 

  103. Malhotra A, Mordes JP, McDermot L, Schaible TF. 1985. Abnormal cardiac biochemistry in spon-taneously diabetic Bio-Breeding/Worcester rat. Am J Physiol 249:H1051–H1055.

    PubMed  CAS  Google Scholar 

  104. Scheuer J, Bhan AK. 1979. Cardiac contractile proteins: adenosine triphosphatase activity and phys-iological function. Circ Res 45:1–12.

    Article  PubMed  CAS  Google Scholar 

  105. Gergely J. 1974. Some aspects of the role of the sarcoplasmic reticulum and the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circ Res 34/35 (Suppl III):74–82.

    Google Scholar 

  106. Pierce GN, Dhalla NS. 1981. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13:1063–1069.

    Article  PubMed  CAS  Google Scholar 

  107. Pierce GN, Dhalla NS. 1985. Mechanisms of the defect in cardiac myofibrillar function during dia-betes. Am J Physiol 248.-E170–E175.

    PubMed  CAS  Google Scholar 

  108. Afzal N, Pierce GN, Elimban V, Beamish RE, Dhalla NS. 1989. Influence of verapamil on some subcellular defects in diabetic cardiomyopathy. Am J Physiol 256:E453–E458.

    PubMed  CAS  Google Scholar 

  109. Pollack PS, Malhotra A, Fein FS, Scheuer J. 1986. Effects of diabetes on cardiac contractile proteins in rabbits and reversal with insulin. Am J Physiol 251:H448–H454.

    PubMed  CAS  Google Scholar 

  110. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. 1981. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  111. Garber DW, Neely JR. 1983. Decreased myocardial function and myosin ATPase in hearts from diabetic rats. Am J Physiol 244:H586–H591.

    PubMed  CAS  Google Scholar 

  112. Garber DW, Everett AW, Neely JR. 1983. Cardiac function and myosin ATPase in diabetic rats treated with insulin, T3 and T4. Am J Physiol 244:H592–H599.

    PubMed  CAS  Google Scholar 

  113. Solaro RJ, Wise RM, Shiner JS, Briggs FN. 1974. Calcium requirements for cardiac myofibrillar activation. Circ Res 34:525–530.

    Article  PubMed  CAS  Google Scholar 

  114. Carafoli E. 1987. Intracellular Ca2+ homeostasis. Ann Rev Biochem 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  115. Penpargkul S, Fein F, Sonnenblick EH, Scheuer J. 1981. Depressed sacroplasmic reticular function for diabetic rats. J Mol Cell Cardiol 13:303–309.

    Article  PubMed  CAS  Google Scholar 

  116. Lopaschuk GD, Katz S, McNeill JH. 1983. The effect of alloxan-and streptozotocin-induced dia-betes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acyl-carnitines. Can J Physiol Pharmacol 61:439–448.

    Article  PubMed  CAS  Google Scholar 

  117. Lopaschuk GD, Thahiliani AG, Vadlamudi RVSV, Katz S, McNeill JH. 1983. Cardiac sarcoplasmic reticulum function in insulin-or carnitine-treated diabetic rats. Am J Physiol 245:H969–H976.

    PubMed  CAS  Google Scholar 

  118. Pierce GN, Ganguly PK, Dzurba A, Dhalla NS. 1985. Modification of the function of cardiac sub-cellular organelles by insulin. Adv Myocardiol 6:113–125.

    PubMed  CAS  Google Scholar 

  119. Feuvray D, Idell-Wenger JA, Neely JR. 1979. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 44:322–329.

    Article  PubMed  CAS  Google Scholar 

  120. Solaro RJ, ed. 1986. Protein Phosphorylation in Heart Muscle. Boca Raton, FL: CRC Press.

    Google Scholar 

  121. Raju RVS, Kakkar R, Sharma RK. 1997. Biological significance of phosphorylation and myristoy-lation in the regulation of cardiac muscle proteins. Mol Cell Biochem 176:135–143.

    Article  PubMed  CAS  Google Scholar 

  122. Rapundalo ST, Solaro RJ, Kranias EG. 1989. Inotropic responses to isoproterenol and phosphodi-esterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphoryla-tion of sarcoplasmic reticulum and myofibrillar proteins. Circ Res 64:104–111.

    Article  PubMed  CAS  Google Scholar 

  123. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM. 1983. (¦Â-Adrenergic stimula-tion of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258:464–471.

    PubMed  CAS  Google Scholar 

  124. Kranias EG, Solaro RJ. 1982. Phosphorylation of troponin I and phospholamban during cate-cholamine stimulation of rabbit heart. Nature 298:182–184.

    Article  PubMed  CAS  Google Scholar 

  125. Lindemann JP, Watanabe AM. 1985. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 260:4516–4525.

    PubMed  CAS  Google Scholar 

  126. Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazi A. 1993. Role of Ca2+-calmodulin depen-dent phopholamban phosphorylation on the relaxant effect of beta-adrenergic agonists. Mol Cell Biochem 124:33–42.

    Article  PubMed  CAS  Google Scholar 

  127. Talosi L, Kranias EG. 1992. Effect of alpha-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Circ Res 70:670–678.

    Article  PubMed  CAS  Google Scholar 

  128. Venema RC, Kuo JF. 1993. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem 268:2705–2711.

    PubMed  CAS  Google Scholar 

  129. Sabine B, Willlenbrock R, Haase H, Karczewski P, Wallukat G, Dietz R, Krause EG. 1995. Cyclic GMP-mediated phospholamban phosphorylation in intact cardiomyocytes. Biochem Biophys Res Commun 214:75–80.

    Article  PubMed  CAS  Google Scholar 

  130. Srivastava AK. 1995. Protein tyrosine phosphorylation in cardiovascular system. Mol Cell Biochem 149/150:87–94.

    Article  Google Scholar 

  131. Foncea R, Andersson M, Ketterman A, Blakesley V, Sapag-Hagar M, Sugden PH, Le Roith D, Lavandero S. 1997. Insulin-like growth factor-I rapidly activates multiple signal transduction path-ways in cultured rat cardiac myocytes. J Biol Chem 272:19115–19124.

    Article  PubMed  CAS  Google Scholar 

  132. Clerk A, Gillespie-Brown J, Fuller SJ, Sugden PH. 1996. Stimulation of phosphatidylinositol hydrol-ysis, protein kinase C translocation and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response. Biochem J 317:109–118.

    PubMed  CAS  Google Scholar 

  133. Clerk A, Sugden PH. 1997. Cell stress-induced phosphorylation of ATF2 and c-jun transcription factors in rat ventricular myocytes. Biochem J 325:801–810.

    PubMed  CAS  Google Scholar 

  134. Xu H, Hawkins C, Narayanan N. 1993. Phosphorylation and activation of the Ca +-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J Biol Chem 268:8394–8397.

    PubMed  CAS  Google Scholar 

  135. James P, Inui M, Tada M, Chiesi M, Carafoli E. 1989. Nature and site of phospholamban regula-tion of the Ca2+ pump of sarcoplasmic reticulum. Nature 342:90–92.

    Article  PubMed  CAS  Google Scholar 

  136. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG. 1994. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of B-agonist stimulation. Circ Res 75:401–409.

    Article  PubMed  CAS  Google Scholar 

  137. Colyer J, Wang JH. 1991. Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem 266:17486–17493.

    PubMed  CAS  Google Scholar 

  138. Huggins JP, England PJ. 1987. Evidence for a phosphorylation-induced conformational change in phospholamban from the effects of three proteases. FEBS Lett 217:32–36.

    Article  PubMed  CAS  Google Scholar 

  139. Kirchberger MA, Tada M, Katz AM. 1974. Adenosine 3¡¯:5¡¯-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sar-coplasmic reticulum. J Biol Chem 249:6166–6173.

    PubMed  CAS  Google Scholar 

  140. Kranias EG. 1985. Regulation of Ca2+ transport by cyclic 3¡¯:5¡¯-AMP-dependent and calcium-calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum. Biochim Biophys Acta 844:193–199.

    Article  PubMed  CAS  Google Scholar 

  141. Tada M, Kirchberger MA, Katz AM. 1975. Phosphorylation of a 22,000 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 250:2640–2647.

    PubMed  CAS  Google Scholar 

  142. Tada M, Yamada M, Ohmori F, Kuzuya T, Inui M, Abe H. 1980. Transient state kinetic studies of Ca2+-dependant ATPase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phopholamban. J Biol Chem 255: 1985–1992.

    PubMed  CAS  Google Scholar 

  143. Miyakoda G, Yoshida A, Takisawa H, Nakamura T. 1987. Beta-adrenergic regulation of contractility and protein phosphorylation in spontaneously beating isolated rat myocardial cells. J Biochem Tokyo 102:211–224.

    PubMed  CAS  Google Scholar 

  144. Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M, Karczewski P, Krause EG. 1996. ¦Â2-adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Mol Cell Biochem 163/164:113–123.

    Article  CAS  Google Scholar 

  145. Sulakhe PV, Vo XT. 1995. Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli: roles of cyclic nucleotides, calcium, protein kinases and phosphatases and depolarization. Mol Cell Biochem 149/150:103–126.

    Article  Google Scholar 

  146. Gupta RC, Neumann J, Watanabe AM. 1993. Comparison of adenosine and muscarinic receptor-mediated effects on protein phosphatase inhibitor-1 activity in the heart. J Pharmacol Exp Ther 266:16–22.

    PubMed  CAS  Google Scholar 

  147. Iwasa Y, Hosey MM. 1983. Cholinergic antagonism of beta-adrenergic stimulation of cardiac mem-brane protein phosphorylation in situ. J Biol Chem 258:4571–4575.

    PubMed  CAS  Google Scholar 

  148. Lindemann JP, Watanabe AM. 1985. Muscarinic cholinergic inhibition of beta-adrenergic stimula-tion of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J Biol Chem 260:13122–13129.

    PubMed  CAS  Google Scholar 

  149. Gupta RC, Neumann J, Boknik P, Watanabe AM. 1994. M2-specific muscarinic cholinergic recepor-mediated inhibition of cardiac regulatory protein phosphorylation. Am J Physiol 266:H1138–H1144.

    PubMed  CAS  Google Scholar 

  150. Davis BA, Schwartz A, Samaha FJ, Kranias EG. 1983. Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation. J Biol Chem 258:13587–13591.

    PubMed  CAS  Google Scholar 

  151. Gupta RC, Davis BA, Kranias EG. 1987. Mechanism of the stimulation of cardiac sarcoplasmic reticulum calcium pump by calmodulin. Membr Biochem 7:73–86.

    Article  PubMed  CAS  Google Scholar 

  152. Tada M, Inui M, Yamada M, Kadoma M, Kuzuya T, Abe H, Kakiuchi S. 1983. Effects of phospho-lamban phosporylation catalyzed by adenosine 3’:5’-monophosphate-and calmodulin-dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 15:335–346.

    Article  PubMed  CAS  Google Scholar 

  153. Baltas LG, Karozweski P, Bartel S, Krause EG. 1997. The endogenous cardiac sarcoplasmic reticu-lum Ca2+/calmodulin-dependent kinase is activated in response to ¦Â-adrenergic stimulation and becomes Ca2+-dependent in intact beating hearts. FEBS Lett 409:131–136.

    Article  PubMed  CAS  Google Scholar 

  154. Huggins JP, Cook EA, Piggott JR, Mattinsley TJ, England PJ. 1989. Phopholamban is a good sub-strate for cyclic GMP-dependent protein kinase in vitro, but not in intact cardiac or smooth muscle. Biochem J 260:829–835.

    PubMed  CAS  Google Scholar 

  155. Movesesian MA, Nishikawa M, Adelstein RS. 1984. Phosphorylation of phospholamban by calcium-activated, phopholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem 259:8029–8032.

    Google Scholar 

  156. Allen BG, Katz S. 1996. Phosphorylation of cardiac junctional and free sarcoplasmic reticulum by PKC ¦Á, PKC ¦Â, PKA and the Ca2+/calmodulin-dependent protein kinase. Mol Cell Biochem 155:91–103.

    Article  PubMed  CAS  Google Scholar 

  157. Cohen P. 1989. The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508.

    Article  PubMed  CAS  Google Scholar 

  158. Kranias EG. 1985. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 260:11006–11010.

    PubMed  CAS  Google Scholar 

  159. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14.

    PubMed  CAS  Google Scholar 

  160. Hohenegger M, Suko J. 1993. Phosphorylation of the purified cardiac ryanodine receptor by exoge-nous and endogenous protein kinases. Biochem J 296:303–308.

    PubMed  CAS  Google Scholar 

  161. Witcher DR, Kovacs RJ, Schulman H, Cepali DC, Jones LR. 1991. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266: 11144–11152.

    PubMed  CAS  Google Scholar 

  162. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. 2000. PKA phosphorylation dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor) defection regulation in failing hearts. Cell 101:365–376.

    Article  PubMed  CAS  Google Scholar 

  163. Li L, Satoh H, Ginsburg KS, Bers DM. 1997. The effect of Ca2+-calmodulin dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol 501:17–31.

    Article  PubMed  CAS  Google Scholar 

  164. Scott BT, Simmerman HKB, Collins JH, Nadal-Ginard B, Jones LR. 1988. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964.

    PubMed  CAS  Google Scholar 

  165. Cala SE, Miles K. 1992. Phosphorylation of the cardiac isoform of calsequestrin in cultured rat myotubes and rat skeletal muscle. Biochim Biophys Acta 1118:277–287.

    Article  PubMed  CAS  Google Scholar 

  166. Enyedi A, Farago A, Sarkadi B, Gardos G. 1984. Cyclic AMP-dependent protein kinase and Ca2+-calmodulin stimulate the formation of polyphosphoinositides in a sarcoplasmic reticulum prepara-tion of rabbit heart. FEBS Lett 176:235–238.

    Article  PubMed  CAS  Google Scholar 

  167. Fabiato A. 1985. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell. J Gen Physiol 85:247–289.

    Article  PubMed  CAS  Google Scholar 

  168. Cleemann L, Morad M. 1991. Role of Ca2+ channel in cardiac excitation contraction in rat: Evidence from Ca2+ transients and contraction. J Physiol (Lond) 432:283–312.

    CAS  Google Scholar 

  169. Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dhalla NS. 1982. Cardiac alpha-and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 77:610–618.

    Article  PubMed  CAS  Google Scholar 

  170. Latifpour J, McNeill JH. 1984. Cardiac autonomic receptors: effect of long term experimental dia-betes. J Pharmacol Exp Ther 230:230–242.

    Google Scholar 

  171. Sundaresan PR, Sharma VK, Gingold SI, Banerjee SP. 1984. Decrease ¦Â-adrenergic receptors in rat heart in streptozotocin-induced diabetes: role of thyroid hormones. Endocrinology 114:1358–1363.

    Article  PubMed  CAS  Google Scholar 

  172. Williams RS, Schaible TF, Scheuer J, Kennedy R. 1983. Effects of experimental diabetes on adrenergic and cholinergic receptors for rat myocardium. Diabetes 32:881–886.

    Article  PubMed  CAS  Google Scholar 

  173. Schwartz A, Lindemayer GE, Allen JC. 1975. The sodium-potassium, adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol Rev 27:3–134.

    PubMed  CAS  Google Scholar 

  174. Onji T, Liu M-S. 1980. Effects of alloxan-diabetes on the sodium potassium adenosine triphosphate enzyme system in dog hearts. Biochem Biophys Res Commun 96:799–804.

    Article  PubMed  CAS  Google Scholar 

  175. Heyliger CE, Prakash A, McNeill JH. 1987. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 252:H540–H544.

    PubMed  CAS  Google Scholar 

  176. Makino N, Dhalla KS, Elimban V, Dhalla NS. 1987. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 253:E202–E207.

    PubMed  CAS  Google Scholar 

  177. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R. 1990. Na+-H+ exchanger in cardiac sarcolemmal vesicles isolated from diabetic rats. Am J Physiol 258:H255–H261.

    PubMed  CAS  Google Scholar 

  178. Pierce GN, Dhalla NS. 1983. Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart. Am J Physiol 245:C241–C247.

    PubMed  CAS  Google Scholar 

  179. Ku DD, Sellers BM. 1982. Effects of streptozotocin diabetes and insulin treatment on myocardial sodium pump and contractility of the rat heart. J Pharmacol Exp Ther 222:395–400.

    PubMed  CAS  Google Scholar 

  180. LeBlanc N, Hume JR. 1990. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376.

    Article  PubMed  CAS  Google Scholar 

  181. Bridge JHB, Smoley JR, Spitzer KW. 1990. The relationship between charge movements associated with ICa2+ and INa+-Ca2+ in cardiac myocytes. Science 248:370–376.

    Article  Google Scholar 

  182. Borda E, Pascual J, Wald M, Sterin-Borda L. 1988. Hypersensitivity to calcium associated with an increased sarcolemmal Ca2+-ATPase activity in diabetic rat heart. Can J Cardiol 4:97–101.

    PubMed  CAS  Google Scholar 

  183. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139.

    Article  PubMed  CAS  Google Scholar 

  184. Pierce GN, Dhalla NS. 1985. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54.

    PubMed  CAS  Google Scholar 

  185. Tanaka Y, Konno N, Kako KJ. 1992. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res 26:409–414.

    Article  PubMed  CAS  Google Scholar 

  186. Puckett SW, Reddy WJ. 1979. A decrease in the malate-aspartate shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J Mol Cell Cardiol 11:173–187.

    Article  PubMed  CAS  Google Scholar 

  187. Flutson NJ, Kerbey AL, Randle PJ, Sugden PH. 1978. Conversion of inactive (phosphorylated) pyru-vate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat. Biochem J 173:669–675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Netticadan, T., Rastogi, S., Chohan, P.K., Goyal, R.K., Dhalla, N.S. (2003). Regulation of Cardiac Function in Diabetes. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_28

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics