Skip to main content

Abstract

Although technical advances in drug discovery are identifying an increasing number of biologically active compounds, many of these are still eliminated during the selection and development phases. Historically, a high proportion of these failures have been due to poor pharmacokinetic properties. To reduce this failure rate, candidate compounds are now being screened for DMPK properties (absorption, distribution, metabolic stability and excretion) and the derived parameters are then being used to predict their human pharmacokinetic profiles. These predicted profiles not only help to select the best candidates for development, but can also provide a starting dose for the first clinical studies. Such predictions can, therefore, drastically reduce the time and expense of drug research and development’. Furthermore, because DMPK issues are considered during the selection process, fewer compounds are now dropping out of development because of pharmacokinetic reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Norris, G.D. Leesman, P.J. Sinko, and G.M. Grass, Development of predictive pharmacokinetic simulation models for drug discoveryJ. Control. Release 65(1–2), 55–62 (2000).

    PubMed  CAS  Google Scholar 

  2. H. Boxenbaum and M. Battle, Effective half-life in clinical pharmacologyJ. Clin. Pharmacol. 35(8), 763–766 (1995).

    PubMed  CAS  Google Scholar 

  3. B. Boxenbaum and R.W. D’SouzaInterspecies Pharmacokinetic Scaling, Biological Design and Neoteny in Advances in Drug ResearchB. Testa, Editor. 1990, Academic Press Limited: London. p. 139–196.

    Google Scholar 

  4. D.B. Campbell, Can allometric interspecies scaling be used to predict human kineticsDrug Inf. J 28235–245 (1994).

    Google Scholar 

  5. J. Mordenti, Man versus beast: pharmacokinetic scaling in mammalsJ. Pharm. Sci. 75(11), 1028–40 (1986).

    PubMed  CAS  Google Scholar 

  6. R.M. Ings, Interspecies scaling and comparisons in drug development and toxicokineticsXenobiotica 20(11), 1201–31 (1990).

    PubMed  CAS  Google Scholar 

  7. J.H. Lin, Species similarities and differences in pharmacokineticsDrug Metab. Dispos. 23(10), 1008–21. (1995).

    PubMed  CAS  Google Scholar 

  8. J.H. Lin and A.Y. Lu, Role of pharmacokinetics and metabolism in drug discovery and developmentPharmacol. Rev. 49 (4)403–49. (1997).

    PubMed  CAS  Google Scholar 

  9. T. Lavé, O. Luttringer, J. Zuegge, G. Schneider, P. Coassolo, and F.P. Theil, Prediction of human pharmacokinetics based on preclinicalin vitroandin vivo data, Ernst Schering Research Foundation workshop (Ernst Schering Res Found Workshop) 3781–104 (2002).

    Google Scholar 

  10. T. Lave, P. Coassolo, and B. Reigner, Prediction of hepatic metabolic clearance based on interspecies allometric scaling techniques andin vitro-in vivocorrelationsClin. Pharmacokinet. 36(3), 211–31 (1999).

    PubMed  CAS  Google Scholar 

  11. P.J. McNamaraInterspecies scaling in pharmacokinetics in Pharmaceutical bioequivalenceP.G. Welling, F.L.S. Tse, and S.V. Dighe, Editors. 1991, Marcel Dekker: New York. p. 267–300.

    Google Scholar 

  12. J. Zuegge, G. Schneider, P. Coassolo, and T. Lave, Prediction of Hepatic Metabolic Clearance in Man - Comparison and Assessment of Prediction ModelsClin. Pharmacokinet 40(7) 553–63 (2001).

    PubMed  CAS  Google Scholar 

  13. R. Kawai, M. Lemaire, J.L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland, Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125J. Pharmacol. Exp. Ther. 22(5), 327–65 (1994).

    CAS  Google Scholar 

  14. R. Kawai, D. Mathew, C. Tanaka, and M. Rowland, Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to humanJ. Pharmacol. Exp. Ther.287(2), 457–68 (1998).

    PubMed  CAS  Google Scholar 

  15. S.B. Charnick, R. Kawai, J.R. Nedelman, M. Lemaire, W. Niederberger, and H. Sato, Physiologically based pharmacokinetic modeling as a tool for drug developmentJ. Pharmacokinet. Biopharm. 23(2), 217–229 (1995).

    PubMed  CAS  Google Scholar 

  16. L.E. Gerlowski and R.K. Jain, Physiologically based pharmacokinetic modeling: principles and applicationsJ. Pharm. Sci. 72(10), 1103–27 (1983).

    PubMed  CAS  Google Scholar 

  17. M.E. Andersen, Development of physiologically based pharmacokinetic and physiologically-based pharmacodynamic models for applications in toxicology and risk assessmentToxico. Lett. 79(1–3), 35–44 (1995).

    CAS  Google Scholar 

  18. M.E. Andersen, H.d. Clewell, M.L. Gargas, F.A. Smith, and R.H. Reitz, Physiologically based pharmacokinetics and the risk assessment process for methylene chlorideToxicol Appl Pharmacol 87(2), 185–205 (1987).

    PubMed  CAS  Google Scholar 

  19. J.C. Ramsey and M.E. Andersen A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humansToxicology 73(1)159–75 (1984).

    CAS  Google Scholar 

  20. R.C. Ward, C.C. Travis, D.M. Hetrick, M.E. Andersen, and M.L. Gargas, Pharmacokinetics of tetrachloroethyleneToxicol. Appl. Pharmacol. 93(1), 108–17 (1988).

    PubMed  CAS  Google Scholar 

  21. P. Poulin and F.P. Theil, A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discoveryJ. Pharm. Sci 89((1)), 16–35 (2000).

    PubMed  CAS  Google Scholar 

  22. F.P. Theil, T.W. Guentert, S. Haddad, and P. Poulin, Utility of Physiologically Based Pharmacokinetic Models to Drug Development and Rational Drug Discovery Candidate SelectionToxico. Leu. (2002), in press.

    Google Scholar 

  23. M. Rowland, Physiologic pharmacokinetic models and interanimal species scalingPharmacol. Ther. 29(1), 49–68 (1985).

    PubMed  CAS  Google Scholar 

  24. H. Harashima, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano, Prediction of serum concentration time course of quinidine in human using a physiologically based pharmacokinetic model developed from the ratJ. Pharm. Sci 9(2), 132–8 (1986).

    CAS  Google Scholar 

  25. Y. Sawada, H. Harashima, M. Hanano, Y. Sugiyama, and T. Iga, Prediction of the plasma concentration time courses of various drugs in humans based on data from ratsJ. Pharmacokinet. Biopharm. 8(9), 757–66 (1985).

    CAS  Google Scholar 

  26. H.W. Ruelius, Extrapolation from animals to man: predictions, pitfalls and perspectivesXenobiotica 17(3), 255–65 (1987).

    PubMed  CAS  Google Scholar 

  27. J.J. Bogaards, E.M. Hissink, M. Briggs, R. Weaver, R. JochemsenP.Jackson, M. Bertrand, and P.J. van Bladeren, Prediction of interindividual variation in drug plasma levelsin vivofrom individual enzyme kinetic data and physiologically based pharmacokinetic modelingEur. J. Pharm. Sci. 12(2), 117–24 (2000).

    PubMed  CAS  Google Scholar 

  28. P.A. Arundel, A multi-compartmental model generally applicable to physiologically-based pharmacokineticsThe third IFAC symposium. Modeling and control in biomedical systemsUniversity of Warwick 23–26 March (1997).

    Google Scholar 

  29. H. Boxenbaum, Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokineticsJ. Pharm. Sci. 10(2), 201–27 (1982).

    CAS  Google Scholar 

  30. W.F. Richter, P. Heizmann, J. Meyer, V. Starke, and T. Lave, Animal pharmacokinetics and interspecies scaling of Ro 25–6833 and related (lactamylvinyl)cephalosporinsJ. Pharm. Sci. 87(4), 496–500 (1998).

    Google Scholar 

  31. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga, Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animalsJ. Pharmacokinet. Biopharm. 12(3) 241–61 (1984).

    PubMed  CAS  Google Scholar 

  32. W.L. Chiou, H.Y. Jeong, S.M. Chung, and T.C. Wu, Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humansPharm. Res. 17(2), 135–40 (2000).

    PubMed  CAS  Google Scholar 

  33. L. Chiou W. and W. Buehler P. Comparison of oral absorption and bioavailablity of drugs between monkey and humanPharm. Res 19(6), 868–74 (2002).

    PubMed  CAS  Google Scholar 

  34. W.L. Chiou and A. Barye, Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and ratsPharm. Res 15 (11)1792–5 (1998).

    PubMed  CAS  Google Scholar 

  35. I. Mahmood and J.D. Balian, Interspecies scaling: predicting pharmacokinetic parameters of antiepileptic drugs in humans from animals with special emphasis on clearanceJ. Pharm. Sci. 85(4)411–414 (1996).

    Google Scholar 

  36. I. Mahmood, Interspecies scaling of renally secreted drugsLife Sci 63(26), 2365–71 (1998).

    PubMed  CAS  Google Scholar 

  37. I. Mahmood and J.D. Balian, Interspecies scaling: Predicting clearance of drugs in humans. Three different approachesXenobiotica 26(9), 887–895 (1996).

    PubMed  CAS  Google Scholar 

  38. I. Mahmood and J.D. Balian, The pharmacokinetic principles behind scaling from preclinical results to phase I protocolsClin. Pharmacokinet. 36(1), 1–11 (1999).

    PubMed  CAS  Google Scholar 

  39. H. Boxenbaum and C. Dilea, First-time-in-human dose selection: Allometric thoughts and perspectivesJ. Clin. Pharmacol. 35 (10)957–966 (1995).

    PubMed  CAS  Google Scholar 

  40. R.S. Obach, J.G. Baxter, T.E. Liston, B.M. Silber, B.C. Jones, F. Maclntyre, D.J. Rance, and P. Wastall, The prediction of human pharmacokinetic parameters from preclinical andin vitrometabolism dataJ. Pharmacol. Exp. Ther. 283(1), 46–58 (1997).

    PubMed  CAS  Google Scholar 

  41. J. Mordenti, S.A. Chen, J.A. Moore, B.L. Ferraiolo, and J.D. Green, Interspecies scaling of clearance and volume of distribution data for five therapeutic proteinsPharm. Res. 8(11), 1351–9 (1991).

    PubMed  CAS  Google Scholar 

  42. E.F. Adolph, Quantitative relations in the physiological contributions of mammalsScience 109579–85 (1949).

    PubMed  CAS  Google Scholar 

  43. H. Boxenbaum, Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoinJournal 8(2), 165–76 (1980).

    CAS  Google Scholar 

  44. P.L. Bonate and D. Howard, Prospective allometric scaling: does the emperor have clothes?J. Clin. Pharmacol 40(6), 665–70 (2000).

    PubMed  CAS  Google Scholar 

  45. A.A. Heusner, What does the power function reveal about structure and function in animals of different size?Annu. Rev. Physiol 49121–33 (1987).

    PubMed  CAS  Google Scholar 

  46. T. Lave, B. Levet Trafit, A.H. Schmitt Hoffmann, B. Morgenroth, W. Richter, and R.C. Chou, Interspecies scaling of interferon disposition and comparison of allometric scaling with concentration-time transformationsJ. Pharm. Sci 84(11), 1285–90 (1995).

    PubMed  CAS  Google Scholar 

  47. V.F. Cosson, E. Fuseau, C. Efthymiopoulos, and A. Bye, Mixed effect modeling of sumatriptan pharmacokinetics during drug development. I: Interspecies allometric scalingJ. Pharmacokinet, Biopharm 25(2), 149–67 (1997).

    CAS  Google Scholar 

  48. T. Martin Jiménez and E. Riviere Jim, Mixed-effects modeling of the interspecies pharmacokinetic scaling of oxytetracyclineJournal 91((2)), 331–41 (2002).

    Google Scholar 

  49. R.L. Dedrick, K.B. Bischoff, and D.S. Zaharko, Interspecies correlation of plasma concentration, history of methotrexate (NSC-740)Cancer Chemother. Rep 5495–101 (1970).

    PubMed  CAS  Google Scholar 

  50. H. Boxenbaum and R. Ronfeld, Interspecies pharmacokinetic scaling and the Dedrick plotsAm. J. Physiol 245(6), R768–75 (1983).

    PubMed  CAS  Google Scholar 

  51. H. Boxenbaum, Time concepts in physics, biology, and pharmacokineticsJ. Pharm. Sci 75(11), 1053–62 (1986).

    PubMed  CAS  Google Scholar 

  52. C. Efthymiopoulos, R. Battaglia, and M. Strolin-Benedetti, Animal pharmacokinetics and interspecies scaling of FCE 22101, a penem antibioticJ. Antimicrob. Chemother 27(4), 517–26 (1991).

    PubMed  CAS  Google Scholar 

  53. M. Chung, E. Radwanski, D. Loebenberg, C.C. Lin, E. Oden, S. Symchowicz, R.P. Gural, and G.H. Miller, Interspecies pharmacokinetic scaling of Sch 34343J. Antimicrob. Chemother 15227–33 (1985).

    PubMed  Google Scholar 

  54. D.S.R. W and H. Boxenbaum, Physiological pharmacokinetic models: some aspects of theory, practice and potentialToxicology 4(2), 151–71 (1988).

    Google Scholar 

  55. H. Boxenbaum, Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigmDrug Metab. Rev. 15(5–6), 1071–121 (1984).

    PubMed  CAS  Google Scholar 

  56. T. Lave, S. Dupin, M. Schmitt, M. Kapps, J. Meyer, B. Morgenroth, R.C. Chou, D. Jaeck, and P. Coassolo, Interspecies scaling of tolcapone, a new inhibitor of catechol-O- methyltransferase (COMT). Use ofin vitrodata from hepatocytes to predict metabolic clearance in animals and humansXenobiotica 26(8), 839–51 (1996).

    PubMed  CAS  Google Scholar 

  57. T. Lave, A. Saner, P. Coassolo, R. Brandt, A.H. Schmitt Hoffmann, and R.C. Chou, Animal pharmacokinetics and interspecies scaling from animals to man of lamifiban, a new platelet aggregation inhibitorJ. Pharm: Sci. 48(6), 573–7 (1996).

    CAS  Google Scholar 

  58. T. Lave, R. Portmann, G. Schenker, A. Gianni, A. Guenzi, M.A. Girometta, and M. Schmitt, Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran, a low molecular weight thrombin inhibitorJ. Pharm. Pharmacol 51(1), 85–91 (1999).

    PubMed  CAS  Google Scholar 

  59. A. Hutchaleelaha, H.H. Chow, and M. Mayersohn, Comparative pharmacokinetics and interspecies scaling of amphotericin B in several mammalian speciesJ. Pharm. Pharmacol 49178–83 (1997).

    PubMed  CAS  Google Scholar 

  60. R. Lapka, V. Rejholec, T. Sechser, M. Peterkova, and M. Smid, Interspecies pharmacokinetic scaling of metazosin, a novel alpha-adrenergic antagonistBiopharm. Drug Dispos 10(6), 581–9 (1989).

    PubMed  CAS  Google Scholar 

  61. S.S. Ibrahim and F.D. Boudinot, Pharmacokinetics of 2’,3’-dideoxycytidine in rats: application to interspecies scale-upJ. Pharm. Pharmacol. 41(12), 829–34 (1989).

    PubMed  CAS  Google Scholar 

  62. N.A. Grene Lerouge, M.I. Bazin Redureau, M. Debray, and J.M. Schemmann, Interspecies scaling of clearance and volume of distribution for digoxin-specific FabToxicol. Appl. Pharmacol. 138(1), 84–9 (1996).

    PubMed  CAS  Google Scholar 

  63. T. Lave, B. Levettrafit, A.H. Schmitthoffmann, B. Morgenroth, W. Richter, and R.C. Chou, Interspecies Scaling of Interferon Disposition and Comparison of Allometric Scaling With Concentration-Time TransformationsJ. Pharm. Sci 84(11), 1285–1290 (1995).

    PubMed  CAS  Google Scholar 

  64. A. Kurihara, H. Naganuma, M. Hisaoka, H. Tokiwa, and Y. Kawahara, Prediction of human pharmacokinetics of panipenem-betamipron, a new carbapenem, from animal dataAntimicrob. Chemother 36(9), 1810–6 (1992).

    CAS  Google Scholar 

  65. B. Agoram, W.S. Woltosz, and M.B. Bolger, Predicting the impact of physiological and biochemical processes on oral drug bioavailabilityAdv. Drug Deliv. Rev 50 Suppl 1S41–67 (2001).

    Google Scholar 

  66. M. Grass George and J. Sinko Patrick, Physiologically-based pharmacokinetic simulation modellingAdv. Drug Deliv. Rev 54(3), 433–51 (2002).

    PubMed  CAS  Google Scholar 

  67. W.L. Chiou, C. Ma, S.M. Chung, T.C. Wu, and H.Y. Jeong, Similarity in the linear and non-linear oral absorption of drugs between human and ratInt. J. Clin. Pharmacol. Ther. 2000 Nov 38(11), 532–9 (2000).

    CAS  Google Scholar 

  68. N.J. Parrott and T. Lavé, Prediction of Intestinal Absorption: Comparative Assessment of Commercially Available SoftwareEur. J. Pharm: Sci. 1751–61 (2002).

    CAS  Google Scholar 

  69. J.M. DeSesso and C.F. Jacobson, Anatomical and physiological parameters affecting gastrointestinal absorption in humans and ratsFood Chem. Toxicol. 2001 Mar 39(3)), 209–28 (2001).

    CAS  Google Scholar 

  70. Y.L. He, S. Murby, G. Warhurst, L. Gifford, D. Walker, J. Ayrton, R. Eastmond, and M. Rowland, Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly(ethylene glycol) and D- peptidesJ. Pharm. Sci. 1998 87(5) 626–33 (1998).

    CAS  Google Scholar 

  71. L.X. Yu, E. Lipka, J.R. Crison, and G.L. Amidon, Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorptionAdv. Drug Deliv. Rev. 19(3), 359–76 (1996).

    Google Scholar 

  72. S. Winiwarter, N.M. Bonham, F. Ax, A. Hallberg, H. Lennernäs, and A. Karlén, Correlation of human jejunal permeability(in vivo)of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approachJ. Med. Chem. 41(25), 4939–49 (1998).

    PubMed  CAS  Google Scholar 

  73. M. Rowland and T. TozerClinical Pharmacokinetics: Concepts and Applications.1989, Philadelphia, London: Lea and Febiger.

    Google Scholar 

  74. Y. Sawada, M. Hanano, Y. Sugiyama, H. Harashima, and T. Iga, Prediction of the volumes of distribution of basic drugs in humans based on data from animalsJ. Pharmacokinet, Biopharm 12(6), 587–96 (1984).

    CAS  Google Scholar 

  75. G. Schuhmann, B. Fichtl, and H. Km-z, Prediction of drug distributionin vivoon the basis ofin vitrobinding dataBiopharm. Drug Dispos. 873–86 (1987).

    PubMed  CAS  Google Scholar 

  76. B. Fichtl, A. Nieciecki, and K. WalterTissue binding versus plasma binding of drugs: general principles and pharmacokinetic consequencesinAdvances in drug researchC.a. Mordenti, Editor. 1991.

    Google Scholar 

  77. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga, Prediction of the disposition of nine weakly acidic and six basic drugs in humans from pharmacokinetic parameters in ratsJ. Pharmacokinet. Biopharm. 13(5), 477–492 (1985).

    PubMed  CAS  Google Scholar 

  78. K. Yokogawa, J. Ishizaki, S. Ohkuma, and K. Miyamoto, Influence of lipophilicity and lysosomal accumulation on tissue distribution kinetics of basic drugs: a physiologically based pharmacokinetic modelMethods Find. Exp. Clin. Pharmacol. 24(2), 81–93 (2002).

    PubMed  CAS  Google Scholar 

  79. J.B. Houston and D.J. Carlile, Prediction of hepatic clearance from microsomes, hepatocytes, and liver slicesDrug Metab. Rev 29(4), 891–922. (1997).

    PubMed  CAS  Google Scholar 

  80. K.S. Pang and G.J. Mulder, The effect of hepatic blood flow on formation of metabolitesDrug Metab. Dispos 18(3), 270–5 (1990).

    PubMed  CAS  Google Scholar 

  81. K.S. Pang, J.A. Terrell, S.D. Nelson, K.F. Feuer, M.J. Clements, and L. Endrenyi, An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparationJ. Pharmacokinet, Biopharm 14(2), 107–30 (1986).

    CAS  Google Scholar 

  82. K. Walton, J.L. Dome, and A.G. Renwick, Uncertainty factors for chemical risk assessment: interspecies differences in thein vivopharmacokinetics and metabolism of human CYP1A2 substratesFood Chem. Toxicol(7) 667–80 (2001).

    Google Scholar 

  83. H. Boxenbaum and J.B. Fertig, Scaling of antipyrine intrinsic clearance of unbound drug in 15 mammalian speciesEur. J. Drug Metab. Pharmacokinet 9(2), 177–83 (1984).

    PubMed  CAS  Google Scholar 

  84. M. Weiss, W. Sziegoleit, and W. Forster, Dependence of pharmacokinetic parameters on the body weightIna. J. Clin. Pharmacol 15572–5 (1977).

    CAS  Google Scholar 

  85. Y. Shibata, H. Takahashi, and Y. Ishii, A convenientin vitroscreening method for predictingin vivodrug metabolic clearance using isolated hepatocytes suspended in serumDrug Metab. Dispos 28(12), 1518–23 (2000).

    PubMed  CAS  Google Scholar 

  86. Y. Shibata, H. Takahashi, M. Chiba, and Y. Ishii, Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation methodDrug Metab. Dispos 30(8), 892–6 (2002).

    PubMed  CAS  Google Scholar 

  87. T. Lave, S. Dupin, C. Schmitt, B. Valles, G. Ubeaud, R.C. Chou, D. Jaeck, and P. Coassolo, The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humansPharm. Res 14(2), 152–5 (1997).

    PubMed  CAS  Google Scholar 

  88. R.S. Obach, Prediction of human clearance of 29 drugs from hepatic microsomal intrinsic clearance data: an examiniation ofin vitrohalf-life approach and nonspecific binding to miérosomesDrug Metab. Dispos 27(11)1350–9 (1999).

    PubMed  CAS  Google Scholar 

  89. T. Lave, A.H. Schmitt Hoffmann, P. Coassolo, B. Valles, G. Ubeaud, B. Ba, R. Brandt, and R.C. Chou, A new extrapolation method from animals to man: application to a metabolized compound, mofaroteneLife Sci.56 (26), PL473–8 (1995).

    Google Scholar 

  90. T. Lave, P. Coassolo, G. Ubeaud, R. Brandt, C. Schmitt, S. Dupin, D. Jaeck, and R.C. Chou, Interspecies scaling of bosentan, a new endothelin receptor antagonist and integration ofin vitrodata into allometricscalingPharm. Res. 13(1), 97–101 (1996).

    PubMed  CAS  Google Scholar 

  91. G. Schneider, P. Coassolo, and T. Lavé, Combiningin vitroandin vivopharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniquesJ. Med. Chem 42(25), 5072–6 (1999).

    PubMed  CAS  Google Scholar 

  92. A. Rane, G.R. Wilkinson, and D.G. Shand, Prediction of hepatic extraction ratio fromin vitromeasurement of intrinsic clearanceJ. Pharmacol. Exp. Ther 200420–4 (1977).

    PubMed  CAS  Google Scholar 

  93. K. Ito, T. Iwatsubo, S. Kanamitsu, Y. Nakajima, and Y. Sugiyama, Quantitative prediction ofin vivodrug clearance and drug interactions fromin vitrodata on metabolism, together with binding and transportAnnu Rev Pharmacol Toxicol 38461–99. 109 Refs. (1998).

    PubMed  CAS  Google Scholar 

  94. T. Iwatsubo, N. Hirota, T. Ooie, H. Suzuki, and Y. Sugiyama, Prediction ofin vivodrug disposition fromin vitrodata based on physiological pharmacokineticsBiopharm. Drug Dispos 17(4), 273–310 (1996).

    PubMed  CAS  Google Scholar 

  95. J.B. Houston, Utility ofin vitrodrug metabolism data in predictingin vivometabolic clearanceBiochem. Pharmacol 47(9), 1469–1479 (1994).

    PubMed  CAS  Google Scholar 

  96. B.A. Hoener, Predicting the hepatic clearance of xenobiotics in humans fromin vitro data, Biopharm. Drug Dispos 15(4), 295–304 (1994).

    CAS  Google Scholar 

  97. T. Iwatsuboet al.Prediction ofin vivodrug metabolism in the human liver fromin vitrometabolism dataPharmacol. Ther 73(2), 147–171 (1997).

    PubMed  CAS  Google Scholar 

  98. M.G. Soars, B. Burchell, and R.J. RileyIn vitroanalysis of human drug glucuronidation and prediction ofin vivometabolic clearanceJ. Pharmacol. Exp. Ther 301(1), 382–90 (2002).

    PubMed  CAS  Google Scholar 

  99. Y. Naritomi, S. Terashita, S. Kimura, A. Suzuki, A. Kagayama, and Y. Sugiyama, Prediction of human hepatic clearance fromin vivoanimal experiments andin vitrometabolic studies with liver microsomes from animals and humansDrug Metab. Dispos 29(10), 1316–24 (2001).

    PubMed  CAS  Google Scholar 

  100. J.A. McLure, J.O. Miners, and D.J. Birkett, Nonspecific binding of drugs to human liver microsomesBrit. J. Clin. Pharmacol 49(5), 453–61 (2000).

    CAS  Google Scholar 

  101. F.E. Yates and P.N. Kugler, Similarity principles and intrinsic geometries: contrasting approaches to interspecies scalingJPharm Sci 75(11), 1019–27 (1986).

    CAS  Google Scholar 

  102. G.A. SacherRelation of lifespan to brain weight and body weight in mammals.inThe lifespan of animalsG. Wostenholme and M. O’Connor, Editors. 1959, Little Brown & Co: Boston.

    Google Scholar 

  103. T. Lave, A.H. Schmitt-Hoffmann, P. Coassolo, G. Ubeaud, B. Vallès, B. Ba, R. Brandt, and R.C. Chou, A new extrapolation method from animal to man; application to a metabolized compound, mofaroteneLife Sci. 56(26), 473–478 (1995).

    Google Scholar 

  104. T. Lave and P. Coassolo, Commentary on “integration ofin vitrodata and brain weight in allometric scaling to predict clearance in humans: Some suggestions”Journal Of Pharmaceutical Sciences 87(4), 530 (1998).

    CAS  Google Scholar 

  105. T. Lave, S. Dupin, C. Schmitt, R.C. Chou, D. Jaeck, and P. Coassolo, Integration ofin vitrodata into allometric scaling to predict hepatic metabolic clearance in man: Application to 10 extensively metabolized drugsJ. Pharm. Sci 86(5), 584–590 (1997).

    PubMed  CAS  Google Scholar 

  106. M. Boxenbaum, Comparative pharmacokinetics of benzodiazepines in dog andman, J. Pharmacokinet, Biopharm 10411–26 (1982).

    CAS  Google Scholar 

  107. J. Zuegge, G. Schneider, P. Coassolo, and T. Lavé, Prediction of hepatic metabolic clearance: comparison and assessment of prediction modelsClin. Pharmacokinet 40(7), 553–63 (2001).

    PubMed  CAS  Google Scholar 

  108. A. Ayrton and P. Morgan, Role of transport proteins in drug absorption, distribution and excretionXenobiotica 31(8–9), 469–97 (2001).

    PubMed  CAS  Google Scholar 

  109. B. Hsiang, Y. Zhu, Z. Wang, Y. Wu, V. Sasseville, W.P. Yang, and T.G. Kirchgessner, A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl- CoA reductase inhibitor transportersJBiol Chem 274(52), 37161–8. (1999).

    CAS  Google Scholar 

  110. L. Zhang, M.E. Schaner, and K.M. Giacomini, Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa),)J. Pharnacol. Exp. Ther 286(1), 354–61. (1998).

    CAS  Google Scholar 

  111. I. Klein, B. Sarkadi, and A. Varadi, An inventory of the human ABC proteinsBiochim. Biophys. Acta 1461(2), 237–62. (1999).

    PubMed  CAS  Google Scholar 

  112. G.W. Sandker, B. Weert, P. Olinga, H. Wolters, M.J. Slooff, D.K. Meijer, and G.M. Groothuis, Characterization of transport in isolated human hepatocytes. A study with the bile acid taurocholic acid, the uncharged ouabain and the organic cations vecuronium and rocuroniumBiochem. Pharmacol 47(12), 2193–200. (1994).

    PubMed  CAS  Google Scholar 

  113. H. Ishizuka, K. Konno, T. Shiina, H. Naganuma, K. Nishimura, K. Ito, H. Suzuki, and Y. Sugiyama, Species differences in the transport activity for organic anions across the bile canalicular membraneJ. Pharmacol. Exp. Ther 290(3), 1324–30. (1999).

    PubMed  CAS  Google Scholar 

  114. X. Liu, J.P. Chism, E.L. LeCluyse, K.R. Brouwer, and K.L. Brouwer, Correlation of biliary excretion in sandwich-cultured rat hepatocytes andin vivoin ratsDrug Metab. Dispos 27(6), 637–44. (1999).

    PubMed  CAS  Google Scholar 

  115. E.L. LeCluyse, K.L. Audus, and J.H. Hochman, Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configurationAm. J. Physiol. 266(6 Pt 1), C1764–74. (1994).

    PubMed  CAS  Google Scholar 

  116. I. Pahlman, S. Andersson, K. Gunnarsson, M.L. Odell, and M. Wilen, Extensive biliary excretion of the sulfasalazine analogue, susalimod, but different concentrations in the bile duct in various animal species correlating to species-specific hepatobiliary toxicityPharmacol. Toxicol. 85(3), 123–9 (1999).

    PubMed  CAS  Google Scholar 

  117. J.H. Lin, Species similarities and differences in pharmacokineticsDrug metabolism and (Drug Metab Dispos) 1995 Oct 23(10), 1008–21 (1995).

    CAS  Google Scholar 

  118. K.W. Wardet al.Preclinical pharmacokinetics and interspecies scaling of a novel vitronectin receptor antagonistDrug Metab. Dispos 27(11) 1232–41. (1999).

    PubMed  CAS  Google Scholar 

  119. G. Levy, Effect of plasma protein binding on renal clearance of drugsJ Pharm Sci 69(4), 482–3. (1980).

    PubMed  CAS  Google Scholar 

  120. H. Matsushita, H. Suzuki, Y. Sugiyama, Y. Sawada, T. Iga, M. Hanano, and Y. Kawaguchi, Prediction of the pharmacokinetics of cefodizime and cefotetan in humans from pharmacokinetic parameters in animalsJ. Pharmacobiodyn .13(10), 602–11. (1990).

    PubMed  CAS  Google Scholar 

  121. C. Efthymiopoulos, R. Battaglia, and M. Strolin Benedetti, Animal pharmacokinetics and interspecies scaling of FCE 22101, a penem antibioticJ. Antimicrob. Chemother. 27(4), 517–26. (1991).

    PubMed  CAS  Google Scholar 

  122. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga, Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animalsJ. Pharmacokinet. Biopharm. 12(3), 241–61 (1984).

    PubMed  CAS  Google Scholar 

  123. K.M. Giacomini, Membrane transporters in drug dispositionJ. Pharmacokinet. Biopharm. 25(6), 731–41. (1997).

    PubMed  CAS  Google Scholar 

  124. M.J. Dresser, A.T. Gray, and K.M. Giacomini, Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1)J. Pharmacol. Exp. Ther. 292(3), 1146–52. (2000).

    PubMed  CAS  Google Scholar 

  125. P.L. Bonate, K. Reith, and S. Weir, Drug interactions at the renal level. Implications for drug developmentClin. Pharmacokinet. 34(5), 375–404 (1998).

    PubMed  CAS  Google Scholar 

  126. G. Reigner Bruno and S. Blesch Karen, Estimating the starting dose for entry into humans: principles and practiceEur. J. Clin. Pharmacol. 57(12), 835–45 (2002).

    PubMed  CAS  Google Scholar 

  127. B.G. Reigner, P.E.O. Williams, J.H. Patel, J.L. Steimer, C. Peck, and P. vanBrummelen, An evaluation of the integration of pharmacokinetic and pharmacodynamic principles in clinical drug development: Experience within Hoffmann La RocheClin. Pharmacokinet. 33(2), 142–152 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lavé, T., Luttringer, O., Poulin, P., Parrott, N. (2004). Interspecies Scaling. In: Krishna, R. (eds) Applications of Pharmacokinetic Principles in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9216-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9216-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4842-9

  • Online ISBN: 978-1-4419-9216-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics