Skip to main content

Bioanalytical Methods: Challenges and Opportunities in Drug Development

  • Chapter
Applications of Pharmacokinetic Principles in Drug Development

Abstract

The development and validation of quantitative bioanalytical methods to measure drug and biotransformation products (metabolites) in biological matrices has been evolving for decades. The uninterrupted introduction of new technologies and the increasing attention being paid by global regulatory authorities to validation issues has continued to shape this scientific field. However, in the last five years, there has been an unprecedented increase both in the pace and breadth, of research activities related to drug discovery and development.’ The high-throughput screening of compound libraries has dramatically increased the number of potential drug candidates in discovery programs. The resulting need to evaluate these candidates during lead optimization has fueled extraordinary growth in the number of samples being analyzed in bioanalytical laboratories for the quantitative determination of both drugs and putative metabolites in biological matrices such as blood, plasma, serum and urine. Additionally, significantly greater attention is being focused on the metabolic liabilities of these compounds at earlier stages in drug development than ever before. In a continuing effort to keep up with the increasing demands for higher sample throughput, greater sensitivity, and increased metabolic information, bioanalytical scientists are continually accelerating their efforts to search for technological advances. This pattern of change began three decades ago and continues today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powell ML, Jemal M. Rapid chromatography coupled with direct injection LC/MS/MS. American Pharmaceutical Review. 2001; 4: 63–69.

    CAS  Google Scholar 

  2. Garland WA, Powell ML. Quantitative selected ion monitoring (QSIM) of drugs and/or drug metabolites in biological matrices. J. Chromatogr. Sci. 1981; 19: 392–434.

    PubMed  CAS  Google Scholar 

  3. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, et al. Analytical methods validation: bioavailability, bioequivalence and pharamcokinetic studies. Pharmaceutical Research. 1992; 9(4): 588–92.

    Article  Google Scholar 

  4. Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, McGilveray IJ et al. Bioanalytical method validation - revisit with a decade of progress: Pharmaceutical Research, 2000; 17(12): 1551–57.

    PubMed  CAS  Google Scholar 

  5. Guidance for Industry. Bioanalytical Method Validation, U.S. Food and Drug Administration, Center for Drug Evaluation and Research; May 2001.

    Google Scholar 

  6. Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed. Chromatogr. 2000; 14: 422–29.

    CAS  Google Scholar 

  7. Ayrton J, Dear GJ, Leavens WJ, Mallett DN, Plumb RS. The use of turbulent flow chromatography/mass spectrometry for the rapid, direct analysis of a novel pharmaceutical compound in plasma. Rapid Commun. Mass Spectrom. 1997; 11: 1953–58.

    CAS  Google Scholar 

  8. Ayrton J, Dear GJ, Leavens WJ, Mallett DN, Plumb RS. Optimisation and routine use of generic ultra-high flow-rate liquid chromatography with mass spectrometric detection for the direct on-line analysis of pharmaceuticals in plasma. J. Chromatogr. 1998; 828: 199–207.

    Article  CAS  Google Scholar 

  9. Jernal M, Xia Y-Q, Whigan DB. The use of high-flow high performance liquid chromatography coupled with positive and negative ion electrospray tandem mass spectrometry for quantitative bioanalysis via direct injection of the plasma/serum samples. Rapid Commun. Mass Spectrom. 1998; 12: 1389–99.

    Google Scholar 

  10. Jemal M, Ouyang Z, Xia Y-Q, Powell ML. A versatile system of high-flow high performance liquid chromatography with tandem mass spectrometry for rapid direct-injection analysis of plasma samples for quantitation of a ß-lactam drug candidate and its open-ring biotransformation product. Rapid Commun. Mass Spectrom. 1999; 13: 1462–71.

    CAS  Google Scholar 

  11. Xia Y-Q, Whigan DB, Powell ML, Jemal M. Ternary-column system for high-throughput direct-injection bioanalysis by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2000; 14: 105–11.

    CAS  Google Scholar 

  12. Jemal M, Xia Y-Q. The need for adequate chromatographic separation in the quantitative determination of drugs in biological samples by high performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1999; 13(2): 97–106.

    CAS  Google Scholar 

  13. Naidong W, Lee JW, Jiang X, Wehling M, Hulse JD, Lin PP. Simultaneous assay of morphine, morphine-3-glucuronide and morphine-6-glucuronide in human plasma using normal-phase liquid chromatography-tandem mass spectrometry with a silica column and an aqueous organic mobile phase. J. Chromatogr. B 1999; 735: 255–69.

    Article  CAS  Google Scholar 

  14. Romanyshyn L, Tiller PR, Hop CECA. Bioanalytical applications of “fast chromatography” to high-throughput liquid chromatography/tandem mass spectrometric quantitation. Rapid Commun. Mass Spectrom. 2000; 14: 1662–68.

    CAS  Google Scholar 

  15. Jemal M, Ouyang Z. The need for chromatographic and mass resolution in liquid chromatography/tandem mass spectrometric methods used for quantitation of lactones and corresponding hydroxy acids in biolgical samples. Rapid Commun. Mass Spectrom. 2000; 14: 1757–65.

    CAS  Google Scholar 

  16. Clarke SD, Hill HM, Noctor TAG, Thomas D. Matrix-related modification of ionization in bioanalytical liquid chromatography-atmospheric pressure ionization tandem mass speotrometry. Pharmaceutical Sciences 1996; 2: 203–07.

    CAS  Google Scholar 

  17. Buhrman DL, Price PI, Rudewicz PJ. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: a study of ion suppression. J. Am. Soc. Mass Spectrom. 1996; 7(11): 1099–1105.

    Article  CAS  Google Scholar 

  18. Fu I, Woolf EJ, Matuszewski BK. Effect of the sample matrix on the determination of indinavir in human urine by HPLC with turbo ion spray tandem mass spectrometric detection. J. Pharm. Biomed. Anal. 1998; 18: 347–57.

    Article  PubMed  CAS  Google Scholar 

  19. Matuszewski BK,Constanzer ML, Chavez-Eng CM. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 1998; 70: 882–89.

    Article  PubMed  CAS  Google Scholar 

  20. Bonfiglio R, King RC, Olah TV, Merkle K. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom. 1999; 13: 1175–85.

    CAS  Google Scholar 

  21. Choi BK, Hercules DM, Gusev AI. Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression. J. Chromatogr. A 2001; 907: 337–42.

    Article  PubMed  CAS  Google Scholar 

  22. Guidance for industry. Carcinogenicity study protocol submissions, U.S. Food and Drug Administration, Center for Drug Evaluation and Research; May 2002.

    Google Scholar 

  23. Baille TA, Cayen MN, Fouda H, Gerson R, Green JD, Grossman SJ, et al. Drug metabolites in safety testing. Toxicol. Appl. Pharmacol. 2002; 182(3): 188–96.

    Google Scholar 

  24. Berman J, Halm KA, Adkison K, Shaffer J. Simultaneous pharmacokinetic screening of a mixture of compounds in the dog using API LC/MS/MS analysis for increased throughput. J. Med. Chem. 1997; 40(6): 827–29.

    Article  PubMed  CAS  Google Scholar 

  25. Olah TV, Mcloughlin DA, Gilbert JD. The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure. Rapid Commun. Mass Spectrom. 1997; 11(1): 17–23.

    CAS  Google Scholar 

  26. Anderson RL. Practical Statistics for Analytical Chemists, Van Nostrand Reinhold: New York: 1987.

    Google Scholar 

  27. Yang W, Jiang T, Acosta D, Davis PJ. Microbial models of mammalian metabolism: involvement of cytochrome P450 in the N-demethylation of N-methylcarbazole by Cunninghamella echinulata. Xenobiotica 1993; 23(9): 973–82.

    Article  PubMed  CAS  Google Scholar 

  28. Mutlib AE, Chen H, Nemeth GA, Markwalder JA, Seitz SP, Gan LS et al. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz. Drug Metab. Disp. 1999; 27(11): 1319–33.

    CAS  Google Scholar 

  29. Chen B-C, Sundeen JE, Guo P, Bednarz MS, Hangeland JJ, Ahmed SZ, Jemal M. Synthesis of deuterium-labeled atorvastatin and its metabolites for use as internal standards in a LC/MS/MS method developed for quantitation of the drug and its metabolites in human serum. J. Label. Comp. Radiopharm. 2000; 43(3): 261–70.

    Article  CAS  Google Scholar 

  30. Mutlib AE, Diamond S, Shockcor J, Way R, Nemeth G, Gan L, Christ, DD. Mass spectrometric and NMR characterization of metabolites of roxifiban, a potent and selective antagonist of the platelet glycoprotein IIb/IIIa receptor. Xenobiotica 2000; 30(11): 1091–1110.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng JJ, Lynch ED, Unger SE. Comparison of SPE and fast LC to eliminate mass spectrometric matrix effects from microsomal incubation products. J. Pharm. Biomed. Anal. 2002; 28(2): 279–285.

    Article  PubMed  CAS  Google Scholar 

  32. Foltz RL, Edom RW. Problems and solutions in quantitative determination of drugs and metabolites in physiological specimens by LC-MS/MS. J. Mass Spectrom. Soc. Japan 1998; 46(3): 235–39.

    CAS  Google Scholar 

  33. Ladds G, Wilson K, Burnett D. Automated liquid chromatographic method for the determination of paracetamol and six metabolites in human urine. J. Chromatogr. 1987; 414(2): 355–64.

    PubMed  CAS  Google Scholar 

  34. Cooper TB, Suckow RF, Glassman A. Determination of bupropion and its major basic metabolites in plasma by liquid chromatography with dual-wavelength ultraviolet detection. J. Pharm. Sci. 1984; 73(8): 1104–07.

    Article  PubMed  CAS  Google Scholar 

  35. Wei Y, Nygard GA, Khalil SKW. HPLC method for the separation and quantification of the enantiomers of hydroxychloroquine and its three major metabolites. J. Liq. Chromatogr. 1994; 17(16): 3479–90.

    Article  CAS  Google Scholar 

  36. Brown R, Bain R, Jordan VC. Determination of tamoxifen and metabolites in human serum by high-performance liquid chromatography with post-column fluorescence activation. J. Chromatogr. 1983; 272: 351–58.

    Article  PubMed  CAS  Google Scholar 

  37. Fried KM, Wainer IW. Direct determination of tamoxifen and its four major metabolites in plasma using coupled column high-performance liquid chromatography. Journal of Chromatogr. B: Biomed. Appl. 1994; 655: 261–68.

    Article  CAS  Google Scholar 

  38. Wu J-T, Zeng H, Deng Y, Unger SE. High-speed liquid chromatography/tandem mass spectrometry using a monolithic column for high-throughput bioanalysis. Rapid Commun. Mass Spectrom. 2001; 15(13): 1113–19.

    CAS  Google Scholar 

  39. He H, Sadeque A, Erve JCL, Wood AJJ, Hachey DL. Quantitation of loperamide and N-demethylloperamide in human plasma using electrospray ionization with selected reaction ion monitoring liquid chromatography-mass spectrometry. J. Chromatogr. B: Biomed. Appl. 2000; 744(2): 323–31.

    Article  CAS  Google Scholar 

  40. Srinivasan K, Wang P, Eley AT; White CA, Bartlett, MG. Liquid chromatography-tandem mass spectrometry analysis of cocaine and its metabolites from blood, amniotic fluid, placental and fetal tissues: study of the metabolism and distribution of cocaine in pregnant rats. J. Chromatogr. B: Biomed. Appl. 2000; 745(2): 287–303.

    Article  CAS  Google Scholar 

  41. Kato K, Jingu S, Ogawa N, Higuchi S. Determination of pibutidine metabolites in human plasma by LC-MS/MS. J. Pharm. Biomed. Anal. 2000; 24(2): 237–49.

    Article  PubMed  CAS  Google Scholar 

  42. Liu Z, Short J, Rose A, Ren S, Contel N, Grossman S, Unger S. The simultaneous determination of diazepam and its three metabolites in dog plasma by high-performance liquid chromatography with mass spectroscopy detection. J. Pharm. Biomed. Anal. 2001; 26(2): 321–30.

    Article  PubMed  CAS  Google Scholar 

  43. Bramer SL, Tata PNV, Vengurlekar SS, Brisson JH. Method for the quantitative analysis of cilostazol and its metabolites in human plasma using LC/MS/MS. J. Pharm. Biomed. Anal. 2001; 26(4): 637–50.

    Article  PubMed  CAS  Google Scholar 

  44. Shi G, Wu J-T, Li Y, Geleziunas R, Gallagher K, Emm T, Unger S. Novel direct detection method for quantitative determination of intracellular nucleoside triphosphates using weak anion exchange liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2002; 16(11): 1092–99.

    CAS  Google Scholar 

  45. Andersson LI. Molecular imprinting for drug bioanalysis. A review on the application of imprinted polymers to solid-phase extraction and binding assay. J. Chromatogr., B: Biomed. Appl. 2000; 739: 163–73.

    Article  CAS  Google Scholar 

  46. Venn RF, Goody RJ. Synthesis and properties of molecular imprints of darifenacin - does molecular imprinting have a future in ultra-trace bioanalysis? Methodol. Surv. Bioanal. Drugs 1998; 25: 13–20.

    CAS  Google Scholar 

  47. Cai J, Henion J. Online immunoaffinity extraction-coupled column capillary liquid chromatography/tandem mass spectrometry: Trace analysis of LSD analogs and metabolites in human urine. Anal. Chem. 1996; 68(1): 72–78.

    Article  PubMed  CAS  Google Scholar 

  48. Clarke NJ, Tomlinson AJ, Ohyagi Y, Younkin S, Naylor S. Detection and quantitation of cellularly derived amyloid 13 peptides by immunoprecipitation-HPLC-MS. FEBS Letters 1998; 430(3): 419–23.

    Article  PubMed  CAS  Google Scholar 

  49. Mallikaarjun S, Wood JH, Karnes, HT. High-performance liquid chromatographic method for the determination of salicylic acid and its metabolites in urine by direct injection. J. Chromatogr. 1989; 493(1): 93–104.

    PubMed  CAS  Google Scholar 

  50. Sadagopan N, Cohen L, Roberts B, Collard W, Omer C. Liquid chromatography-tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J. Chromatogr. B: Biomed. Appl. 2001; 759(2): 277–84.

    Article  CAS  Google Scholar 

  51. Jemal M, Khan S, Teitz DS, McCafferty, JA, Hawthorne DJ. LC/MS/MS determination of omapratrilat, a sulfydryl-containing vasopeptidase inhibitor, and its sulfhydryl-and thioether-containing metabolites in human plasma. Anal. Chem. 2001; 73(22): 5450–456.

    Article  PubMed  CAS  Google Scholar 

  52. Singh G, Gutierrez A, Xu K, Blair IA. Liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 2000; 72(14): 3007–013.

    Article  PubMed  CAS  Google Scholar 

  53. Grosse C.M, Davis I M, Arrendale RF, Jersey J, Amin J. Determination of remifentanil in human blood by liquid-liquid extraction and capillary GC-HRMS-SIM using a deuterated internal standard. J. Pharm. Biomed. Anal. 1994; 12(2): 195–203.

    Article  PubMed  CAS  Google Scholar 

  54. Selinger K, Lanzo C, Sekut A. Determination of remifentanil in human and dog blood by HPLC with UV detection. J. Pharm. Biomed. Anal. 1994; 12(2): 243–8.

    Article  PubMed  CAS  Google Scholar 

  55. Jemal M, Xia Y-Q. Bioanalytical method validation design for the simultaneous quantitation of analytes that may undergo interconversion during analysis. J. Pharm. Biomed. Anal. 2000; 22(5): 813–27.

    Article  PubMed  CAS  Google Scholar 

  56. Sidelmann UG, Hansen SH, Gavaghan C, Carless HAJ, Farrant RD, Lindon JC, Wilson ID, Nicholson JK. Measurement of internal acyl migration reaction kinetics using directly coupled HPLC-NMR: application for the positional isomers of synthetic (2-fluorobenzoyl)-D-glucopyranuronic acid. Anal. Chem. 1996; 68(15): 2564–72.

    Article  PubMed  CAS  Google Scholar 

  57. Corcoran O, Mortensen RW, Hansen SH, Troke J, Nicholson JK. HPLC/1H NMR spectroscopic studies of the reactive a-1–0-acyl isomer formed during acyl migration of S-naproxen 1–1–0-acyl glucuronide. Chem. Res. Toxicol. 2001; 14(10): 1363–70.

    Article  PubMed  CAS  Google Scholar 

  58. Khan, Sanaullah, Teitz, Deborah S, Jemal, Mohammed. Kinetic analysis by HPLC-electrospray mass spectrometry of the pH-dependent acyl migration and solvolysis as the decomposition pathways of ifetroban 1–0-acyl glucuronide. Anal. Chem. 1998; 70(8): 1622–28.

    Article  Google Scholar 

  59. Keski-Hynnila H, Raanaa K, Forsberg M, Mannisto P, Taskinen J, Kostiainen R. Quantitation of entacapone glucuronide in rat plasma by on-line coupled restricted access media column and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B: Biomed. Appl. 2001; 759(2): 227–36.

    Article  CAS  Google Scholar 

  60. Joyce KB, Jones AE, Scott RJ, Biddlecombe RA, Pleasance S. Determination the enantiomers of salbutamol and its 4–0-sulfate metabolites in biological matrixes by chiral liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998; 12(23): 1899–1910.

    CAS  Google Scholar 

  61. Toennes SW, Maurer HH. Efficient cleavage of conjugates of drugs or poisons by immobilized ßglucuronidase and arylsulfatase in columns. Clinical Chemistry 1999; 45(12): 2173–82.

    PubMed  CAS  Google Scholar 

  62. Marquer C, Bressolle F. High-performance liquid chromatographic determination of the conjugate metabolites of moxisylyte in human plasma and urine. J. Chromatogr. B: Biomed. Appl. 1997; 691(2): 389–96.

    Article  CAS  Google Scholar 

  63. Morris ME, Levy G. Determination of salicylamide and five metabolites in biological fluids by high-performance liquid chromatography. J. Pharm. Sci. 1983; 72(6): 612–17.

    Article  PubMed  CAS  Google Scholar 

  64. Vree TB, van den Biggelaar-Martea M, Verwey-van Wissen CPWGM. Determination of indomethacin, its metabolites and their glucuronides in human plasma and urine by means of direct gradient high-performance liquid chromatographic analysis. Preliminary pharmacokinetics and effect of probenecid. J. Chromatogr., Biomed. Appl. 1993; 616(2): 271–82.

    Article  CAS  Google Scholar 

  65. Kwong EC, Shen DD. Versatile isocratic high-performance liquid chromatographic assay for propranolol and its basic, neutral and acidic metabolites in biological fluids. J. Chromatogr. 1987; 414(2): 365–79.

    PubMed  CAS  Google Scholar 

  66. Lanchote VL, Santos VJ, Cesarino EJ, Dreossi SAC, Mere Y Jr, Santos SRCJ. Enantioselective analysis of N-Hydroxymexiletine glucuronide in human plasma for pharmacokinetic studies.. Chirality 1999; 11(2): 85–90.

    Article  PubMed  CAS  Google Scholar 

  67. Rindgen D, Grotz D, Clarke NJ, Cox KA. The application of HPLC/tandem mass spectrometry for the assessment of acyl glucuronide metabolite formation in in vitro and in vivo systems in a drug discovery environment. American Pharmaceutical Review 2001; 4(4): 52–58.

    CAS  Google Scholar 

  68. Loewen GR, Macdonald JI, Verbeeck RK. High-performance liquid chromatographic method for the simultaneous quantitation of diflunisal and its glucuronide and sulfate conjugates in human urine. J. Pharr. Sci. 1989; 78(3): 250–55.

    Article  CAS  Google Scholar 

  69. Hermening A, Grafe AK, Baktir G, Mutschler E, Spahn-Langguth H. Gemfibrozil and its oxidative metabolites: quantification of aglycones, acyl glucuronides, and covalent adducts in samples from preclinical and clinical kinetic studies. J. Chromatogr. B: Biomed. Appl. 2000; 741(2): 129–44.

    Article  CAS  Google Scholar 

  70. Grubb NG, Rudy DW, Hall SD Stereoselective high-performance liquid chromatographic analysis of ketoprofen and its acyl glucuronides in chronic renal insufficiency. J. Chromatogr. B: Biomed. Appl. 1996; 678(2): 237–44.

    Article  CAS  Google Scholar 

  71. Kaspersen FM, van Boeckel CAA. A review of the methods of chemical synthesis of sulphate and glucuronide conjugates. Xenobiotica 1987; 12: 1451–71.

    Article  Google Scholar 

  72. Stevenson DE, Hubl U. Optimization of ß-D-glucuronide synthesis using UDP-glucuronyl transferase. Enzyme and Microbial Technology 1999; 24(7): 388–96.

    Article  CAS  Google Scholar 

  73. Woolf T F, Chang T. Preparation of diastereomeric ß-D-glucuronides of the bronchodilator procaterol using immobilized rabbit liver microsomal enzymes. Eur. J. Drug Metab. Pharmacokinet. 1989; 14(2): 111–16.

    Article  PubMed  CAS  Google Scholar 

  74. Burchell B, Brierley CH, Rance D. Specificity of human UDP-glucuronosyltransferases and xenobiotic glucuronidation. Life Sciences 1995; 57(20): 1819–95.

    Article  PubMed  CAS  Google Scholar 

  75. Darque A, Valette G, Rousseau F, Wang LH, Sommadossi JP, Zhou XI. Quantitation of intracellular triphosphate of emtricitabine in peripheral blood mononuclear cells from human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy 1999; 43(9): 2245–50.

    PubMed  CAS  Google Scholar 

  76. Lentner C, Ed. Geigy Scientific Tables Vol. 3; Ciba-Geigy: 1984.

    Google Scholar 

  77. Lentner C, Ed, Geigy Scientific Tables Vol. 1; Ciba-Geigy: 1984.

    Google Scholar 

  78. Bollard ME, Holmes E, Blackledge CA, Lindon JC, Wilson ID, Nicholson JK. ‘H and19F-NMR spectroscopic studies on the metabolism and urinary excretion of mono-and disubstituted phenols in the rat. Xenobiotica 1996; 26(3): 255–73.

    Article  PubMed  CAS  Google Scholar 

  79. Shockcor JP, Unger SE, Savina P, Nicholson JK, Lindon JC. Application of directly coupled LC-NMRMS to the structural elucidation of metabolites of the HIV-1 reverse-transcriptase inhibitor BW935U83. J. Chromatogr. B: Biomed. Appl. 2000; 748(1): 269–79.

    Article  CAS  Google Scholar 

  80. Shockcor JP, Unger SE, Wilson ID, Foxall PJD, Nicholson JK, Lindon JC. Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal. Chem. 1996; 68(24): 4431–35.

    Article  PubMed  CAS  Google Scholar 

  81. Russell DJ, Hadden CE, Martin GE, Gibson AA, Zens AP, Carolan JLA. Comparison of inverse-detected heteronuclear NMR performance: conventional vs. cryogenic microprobe performance. J. Nat. Prod. 2000; 63(8): 1047–49.

    Article  PubMed  CAS  Google Scholar 

  82. Lacey ME, Tan ZJ, Webb AG, Sweedler JV. Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. J. Chromatogr. A. 2001; 922(1–2): 139–49.

    Article  PubMed  CAS  Google Scholar 

  83. Taylor EW, Qian MG, Dollinger GD. Simultaneous online characterization of small organic molecules derived from combinatorial libraries for identity, quantity, and purity by reversed-phase HPLC with chemiluminescent nitrogen, UV, and mass spectrometric detection. Anal. Chem. 1998; 70(16): 3339–47.

    Article  CAS  Google Scholar 

  84. Taylor EW, Jia W, Bush M, Dollinger GD. Accelerating the drug optimization process: identification, structure elucidation, and quantification of in vivo metabolites using stable isotopes with LC/MS“ and the chemiluminescent nitrogen detector. Anal. Chem. 2002; 74(13): 3232–38.

    Article  PubMed  CAS  Google Scholar 

  85. Corcoran O, Nicholson JK, Lenz EM, Abou-Shakra F, Castro-Perez J, Sage AB, Wilson ID. Directly coupled liquid chromatography with inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the identification of drug metabolites in urine: application to diclofenac using chlorine and sulfur detection. Rapid Commun. Mass Spectrom. 2000; 14(24): 2377–84.

    CAS  Google Scholar 

  86. Abou-Shakra FR, Sage AB, Castro-Perez J, Nicholson JK, Lindon JC, Scarfe GB, Wilson ID. High-performance liquid chromatography-UV diode array, inductively coupled plasma mass spectrometry (ICPMS) and orthogonal acceleration time-of-flight mass spectrometry (oa-TOFMS) applied to the simultaneous detection and identification of metabolites of 4-bromoaniline in rat urine. Chromatographia 2002; 55(Suppl.): S9–S13.

    Article  CAS  Google Scholar 

  87. Marshall P, Heudi O, McKeown S, Amour A, Abou-Shakra F. Study of bradykinin metabolism in human and rat plasma by liquid chromatography with inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2002; 16(3): 220–28.

    CAS  Google Scholar 

  88. Nicholson JK, Lindon JC, Scarfe GB, Wilson ID, Abou-Shakra F, Sage AB, Castro-Perez J. High-performance liquid chromatography linked to inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the simultaneous detection and identification of metabolites of 2-bromo-4-trifluoromethyl-[13C]-acetanilide in rat rrine. Anal. Chem. 2001; 73(7): 1491–94.

    Article  PubMed  CAS  Google Scholar 

  89. Teffera Y, Abramson FP, McLean M, Vestal M. Development of an isotope-elective high-performance liquid chromatography detector using chemical-reaction-interface mass spectrometry: Application to deuterated cortisol metabolites in urine. J. Chromatogr. B Biomed. Appl. 1993; 620(1): 89–96.

    Article  CAS  Google Scholar 

  90. Teffera Y, Abramson F. Application of high-performance liquid chromatography/chemical reaction interface mass spectrometry for the analysis of conjugated metabolites: a demonstration using deuterated acetaminophen. Biol. Mass Spectrom. 1994; 23(12): 776–83.

    Article  CAS  Google Scholar 

  91. Yergey AL, Teffera Y, Esteban NV, Abramson FP. Direct determination of human urinary cortisol metabolites by HPLC/CRIMS. Steroids 1995; 60(3): 295–8.

    Article  PubMed  CAS  Google Scholar 

  92. Goldthwaite CA Jr, Hsieh F-Y, Womble SW, Nobes BJ, Blair IA, Klunk LJ, Mayol RF. Liquid chromatography/chemical reaction interface mass spectrometry as an alternative to radioisotopes for quantitative drug metabolism studies. Anal. Chem. 1996; 68(17): 2996–3001.

    CAS  Google Scholar 

  93. Teng J, Teffera Y, Mclean M, Abramson FP. Studying the reaction between clozapine and glutathione with element-selective detection. Res. Commun. Mol. Path. Pharmacol. 1998; 99(2): 131–42.

    CAS  Google Scholar 

  94. Barker J, Gamer RC. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Rapid Commun. Mass Spectrom. 1999; 13: 285–93.

    CAS  Google Scholar 

  95. Damn J, Warsheski J, Garner RC, Fischer V. Accelerator mass spectrometry: Application to an early phase drug metabolism study in humans. Synthesis and Applications of Isotopically Labeled Compounds, Proceedings of the Seventh International Symposium. June 18–22, 2000; John Wiley & Sons.

    Google Scholar 

  96. Gamer RC, Barker J, Flavell C, Garner JV, Whattam M, Young GC, et al. A validation study comparing accelerator MS and liquid scintillation counting for analysis of “C-labelled drugs in plasma, urine and fecal extracts. J. Pharm. Biomed. Anal. 2000; 24(2): 197–209.

    Article  Google Scholar 

  97. White INH, Martin EA, Mauthe RI, Vogel JS, Turteltaub KW, Smith LL. Comparisons of the binding of [14C]radiolabeled tamoxifen or toremifene to rat DNA using accelerator mass spectrometry. Chem. Biol. Interact. 1997; 106: 149–60.

    Article  PubMed  CAS  Google Scholar 

  98. Tuniz C, Bird JR, Fink D, Herzog GF. Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. CRC Press; 1998.

    Google Scholar 

  99. Skipper PL, Wishnok JS, Tannenbaum SR, Hughey BJ, Klinkowstein RE, Shefer RE. Development of a chromatograph-interfaced accelerator mass spectrometer for detection of3H and “C. 216th ACS National Meeting. August 23–27, 1998; American Chemical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell, M.L., Unger, S.E. (2004). Bioanalytical Methods: Challenges and Opportunities in Drug Development. In: Krishna, R. (eds) Applications of Pharmacokinetic Principles in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9216-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9216-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4842-9

  • Online ISBN: 978-1-4419-9216-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics