Step and Stamp Imprint Lithography

  • Jouni Ahopelto
  • Tomi Haatainen
Part of the Nanostructure Science and Technology book series (NST)


As the semiconductor industry continues to push to smaller device geometries, lithography becomes more and more a crucial process step. Traditionally, the semiconductor industry has relied on optical lithography and new generations of optical steppers are being developed for shorter wavelengths. Anyhow, in order to produce sub-50 nm lithography researches have started to look for new solutions, such as X-ray lithography, fast electron beam (e-beam) lithography and nanoimprint lithography (NIL).


Glass Transition Temperature Residual Layer Fresnel Lens Optical Lithography Etching Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 20 (1995).Google Scholar
  2. 2.
    S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, J. Vac. Sci. Technol.B 15, 2897 (1997).CrossRefGoogle Scholar
  3. 3.
    T. Ito and S. Okazaki, Nature 406, 1027 (2000).CrossRefGoogle Scholar
  4. 4.
    See, e.g., Scientific American, p. 32 April 2001.Google Scholar
  5. 5.
    Z. Yu, S. J. Schablitsky and S. Y. Chou, Appl. Phys. Lett. 74, 2381 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Seekamp, S. Zankovych, A.H. Heifer, P. Maury, C.M. Sotomayor Torres, G. Böttger, C. Liguda, M. Eich, B. Heidari, L. Montelius and J. Ahopelto, Nanotechnology, 13, 1–6 (2002).CrossRefGoogle Scholar
  7. 7.
    Puscasu, G. Boreman, R. C. Tiberio and D. Spencer, J. Vac. Sci. Technol. B 18, 3578 (2000).CrossRefGoogle Scholar
  8. 8.
    M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko and O. Nalamasu, Appl. Phys. Lett. 72, 410 (1998).CrossRefGoogle Scholar
  9. 9.
    M. Li, J. Wang, L. Zhuang and S. Y. Chou, Appl. Phys. Lett.76, 673 (2000).CrossRefGoogle Scholar
  10. 10.
    T. Mäkela, T. Haatainen, J. Ahopelto and H. Isolato, J Vac. Sci. Technol. B 19, 487 (2001)CrossRefGoogle Scholar
  11. 11.
    B. Heidari, I. Maximov and L. Montelius, J. Vac. Sci. Technol. B 18, 3557 (2000).CrossRefGoogle Scholar
  12. 12.
    W. Zhang and S. Y. Chou, Appl. Phys. Lett. 79, 845 (2001).CrossRefGoogle Scholar
  13. 13.
    H. Schultz et al., in Abstracts of The 45th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, Washington, DC, May 29 - June 1, 2001, p. 248.Google Scholar
  14. 14.
    M. Colburn, S. Johnson, M. Stewart, S. Damle, B. J. Choi, T. Bailey, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C.G. Willson, Proc. SPIE Vol. 3676, 379–389 (1999).CrossRefGoogle Scholar
  15. 15.
    T. Haatainen, J. Ahopelto, G. Gruetzner, M. Fink and K. Pfeiffer, Proc. SPIE 3997, 874, (2001).Google Scholar
  16. 16.
    H. Schulz, H.-C. Scheer, T. Hoffmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Bleidiessel, G. Gruet-zner, Ch. Cardinaud, F. Gaboriau, M.-C. Peignon, J. Ahopelto and B. Heidari, J. Vac. Sci. Technol. B 18, 1861 (2000). The PPM polymer is now commercialized by micro resist technology GmbH, Scholar
  17. 17.
    Xiaoyun Sun, Lei Zhuang, Wei Zhang, and Stephen Y. Chou, J. Vac. Sci. Technol. B 16, 3922 (1998).CrossRefGoogle Scholar
  18. 18.
    Hiroyuki Nakamura, Akiyoshi Baba and Tanemasa Asano, Jpn. J. Appl. Phys. Part 1 39, 7080 (2000).CrossRefGoogle Scholar
  19. 19.
    B. Faircloth, H. Rohrs, R. Tiberio, R. Ruoff and Robert R. Krchnavek, J. Vac. Sci. Technol. B 18, 1866 (2000).CrossRefGoogle Scholar
  20. 20.
    T. Haatainen and J. Ahopelto, Physica Scripta, in print.Google Scholar
  21. 21.
    T. Haatainen and J. Ahopelto, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jouni Ahopelto
    • 1
  • Tomi Haatainen
    • 1
  1. 1.VTT Centre for MicroelectronicsFinland

Personalised recommendations