Skip to main content

Application of Microcontact Printing and Nanoimprint Lithography

Towards device fabrication

  • Chapter
Alternative Lithography

Abstract

Microcontact printing (μCP) and Nanoimprint lithography (NIL) have both proven to be high resolution lithography processes suitable for large area parallel lithography.17 This property makes them both promising for application in device fabrication, where high throughput is an issue. Especially NIL is used by numerous groups due to its high resolution and potential for applications.810

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kumar and G. Whitesides, Appl. Phys. Lett., 1993, 63, 2002.

    Article  CAS  Google Scholar 

  2. J.L. Wilbur, A. Kumar, E. Kim, G. M. Whitesides, Adv. Mater., (1994), 6, 600.

    Article  CAS  Google Scholar 

  3. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Eng., (1998), 37, 550.

    Article  CAS  Google Scholar 

  4. L. Libiouville, A. Bietsh, H. Schmid, B. Michel, and E. Delamarche, Langmuir, (1999), 15, 300.

    Article  Google Scholar 

  5. L. B. Goetting, T. Deng, and G. M. Whitesides, Langmuir, (1999), 15, 1182.

    Article  CAS  Google Scholar 

  6. X. M. Yang, D. A. Tryk, K. Hasimoto, and A. Fujishima, Appl. Phys. Lett., (1996), 69, 4021.

    Google Scholar 

  7. L. Yan, X.M. Zhao, and G. M. Whitesides, J. Am. Chem. Soc., (1998), 120, 6179.

    Article  CAS  Google Scholar 

  8. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography, J.Vac.Sci.Technol. B14, (1996), (6) 4129–4133.

    Google Scholar 

  9. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nm resolution, Science, (1996), 72, 85–87.

    Article  Google Scholar 

  10. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl.Phys.Lett., (1995), 67(21) 3114–3116.

    Article  CAS  Google Scholar 

  11. L. Guo, P.R. Krauss, and S.Y. Chou, Nanoscale silicon field effect transistors fabricated using imprint lithography, Appl.Phys.Lett., (1997), 71(13) 1881–1883.

    Article  CAS  Google Scholar 

  12. P.R. Krauss and S.Y. Chou, Nano-compact disks with 400 Gbits/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Appl.Phys.Lett., (1997), 71(21) 3174–3176.

    Article  CAS  Google Scholar 

  13. I. Martini, D. Eisert, S. Kuhn, M. Kamp, L. Worschech, J. Koeth, and A. Forchel, Fabrication of quantum point contacts by imprint lithography and transport studies, Proc. EIPBN 2000, to be published in J.Vac.Sci. Technol.B.

    Google Scholar 

  14. X. M. Zhao, J. L. Wilbur, and G. M. Whitesides, Langmuir, (1996), 12, 3257.

    Article  CAS  Google Scholar 

  15. D. Qin, Y. Xia, A. J. Black, G. M. Whitesides, J. Vac. Sci. Technol., (1998), B 16, 98.

    Google Scholar 

  16. H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, IBM J. Res. Develo.41, (1997), 159.

    Article  CAS  Google Scholar 

  17. J. J. Wilbur, A. Kumar, H. A Biebuyck, E. Kim, and G. M. Whitesides, Nanotechology 7, (1996), 452.

    Article  CAS  Google Scholar 

  18. W. Langheinrich, H. Beneking, Microelectronics Engineering (1991), 83, 225.

    Article  Google Scholar 

  19. Y. Xia, X. M. Zhao, E. Kim, G. M. Whitesides, Chem. Mater., (1995), 7, 2332.

    Article  CAS  Google Scholar 

  20. A. Bietsch, B. Michel J. Appl. Phys. (2000), 88, 4310.

    Article  CAS  Google Scholar 

  21. E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, XXXAdv. Material, (1997), 9, 741.

    Article  CAS  Google Scholar 

  22. B. A. Grzybowski, S. T. Brittain, and G. Whitesides, Rev. Sci. Instrum., (1999), 70, 2031.

    Article  CAS  Google Scholar 

  23. H. Schmid, B. Michel Macromolecules, (2000), 33, 3042.

    Article  CAS  Google Scholar 

  24. N.N. Gribov, S.J.C.H. Theeuwen, J. Caro, and S. Radelaar, A new fabrication process for metallic point contacts, Microelectronic Engineering, (1997), 35(1–4) 1–4.

    Article  CAS  Google Scholar 

  25. N.N. Gribov, S.J.C.H. Theeuwen, J. Caro, E.van der Drift, F. D. Tichelaar, T.R. de Kruijff, and B.J. Hickey, Fabrication of metallic point contacts: a new approach for devices with a multilayer or a heterointerface, J.Vac.Sci.Technol., (1998), B16(6) 3943–3947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, G., Borzenko, T., Tormen, M., Hock, V., Molenkamp, L.W. (2003). Application of Microcontact Printing and Nanoimprint Lithography. In: Sotomayor Torres, C.M. (eds) Alternative Lithography. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9204-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9204-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4836-8

  • Online ISBN: 978-1-4419-9204-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics