Advertisement

Application of Nanoimprint Lithography in Magnetism

  • Y. Chen
  • M. Natali
  • S. P. Li
  • A. Lebib
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Patterned magnetic structures are of particular importance for the development of new information technology. They can be used for ultra high-density recording,1 for the fabrication of magnetic randomly accessible memories2 as well as the emerging spin electronics such as spin transistors, resonant tunnel devices and non-volatile pro-grammable logic.3 Previously, high resolution magnetic structures were patterned using X-ray lithography [4], electron beam lithography,5 interference lithography,6 as well as ion irradiation induced mixing.7,8 X-ray lithography is known to be an expensive pro-grammable which should not be considered for mass production of magnetic recording media. Electron beam lithography is limited by its writing speed for large area patterning.9 while interference lithography is a simple technique, it is only suitable for the fabrication of regular pattern arrays. Finally, ion irradiation with a stencil mask provides an interesting alternative but still considerable efforts have to be made in order to show a performance of both high resolution and high throughput.

Keywords

Magnetization Reversal Vortex State Magnetic Force Microscopy Nanoimprint Lithography Magnetostatic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Y. Chou,Proc. IEEE 85, (1997), 652.CrossRefGoogle Scholar
  2. 2.
    G.A. Prinz, K. Hathaway,Phys. Today 48, (1995), 24 MRAM.CrossRefGoogle Scholar
  3. 3.
    G. A. Prinz,Science 282, (1998), 1660.CrossRefGoogle Scholar
  4. 4.
    F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M.F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and F. Veillet,J. Vac. Sci. & Technol. B 13, (1995), 2787 .CrossRefGoogle Scholar
  5. 5.
    C. Haginoya, S. Heike, M. Ishibashi, K. Nakamura, and K. Koike,J. Appl. Phys. 85, (1999), 8327.CrossRefGoogle Scholar
  6. 6.
    C.A. Ross, H. I. Smith,T. Savas, M. Schattenburg, M; Farhoud, M. Hwang, M. Walsh, M.C. Abraham, R.J. Ram,J. Vac. Sci. & Technol. B17, (1999), 3168.CrossRefGoogle Scholar
  7. 7.
    C.Chappert, H. Bernas, J. Ferré, V. Kottler, J. PJamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, H. Launois,Science 280, (1998), 1920.CrossRefGoogle Scholar
  8. 8.
    B. Terris, L. Folks, D. Weller, J. E. E. Baglin, A. J. Kellock, H. Rothuizen, and P. Vettiger,Appl. Phys. Lett. 75, (1999), 403.CrossRefGoogle Scholar
  9. For a general review of conventional and non conventional nanofabrication methods, see Y. Chen and A. Pépin, Electrophoresis, (2001), 122, 187.Google Scholar
  10. 10.
    S. Y. Chou, P.R. Krauss, and J. Renstrom,Appl. Phys. Lett. 67, (1995), 3114.CrossRefGoogle Scholar
  11. 11.
    C. Kittle, Introduction to Solid State Physics, 7th edition (John Wiley & Sons, 1996).Google Scholar
  12. 12.
    Hubert, R. Schafer, Magnetic domains, Springer, Berlin (1988).Google Scholar
  13. 13.
    J.A.C. Bland and B. Heinrich (eds), Ultrathin Magnetic Structures I & II, Springer-Verlag, Berlin (1994).Google Scholar
  14. 14.
    J. Miltat, in Applied Magnetism, edited by R. Gerber, C. D. Wright, and G. Asti, NATO ASI Series (Kluwer, Dordrecht, 1994).Google Scholar
  15. 15.
    C.J. Hegedus, G. Kadar, and E. Dalla Torre,J. Inst. Math. Appl., (1979), 24279.Google Scholar
  16. 16.
    R. Moskowitz, E. Dalla Torre and R.M.M. Chen,Proc. IEEE, (1966), 54, 1211.CrossRefGoogle Scholar
  17. 17.
    M.A.M. Haast, Ph. D. thesis, University of Twente, The Netherlands (1999).Google Scholar
  18. 18.
    W. F. Brown,Jr., J. Appl. Phys., (1968), 39, 993.CrossRefGoogle Scholar
  19. 19.
    R. P. Cowburn and M. E. Welland,Appl. Phys. Lett., (1998), 72, 2041.CrossRefGoogle Scholar
  20. 20.
    J. Zhu and Y. Zheng, and G. Prinz,J. Appl. Phys., (2000), 87, 6668.CrossRefGoogle Scholar
  21. 21.
    J.L Dormann,Revue Phys. Appl., 1981, 16, 275, SUPERMAGN.Google Scholar
  22. 22.
    L. Krusin-Elbaum, T. Shibauchi, B. Agyle, L. Gignac, D. Weller,Nature (2001), 410, 444.CrossRefGoogle Scholar
  23. 23.
    S. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser,Science, 2000, 287, 1989.Google Scholar
  24. Nanoimprint techniques, H.C. Scheer, H. Schulz, T. Hoffmann, C. M. Sotomayor Torres, in The Handbook of Thin Films, H.S. Nalwar (Ed.) Academic Press (2001).Google Scholar
  25. 25.
    P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig,IBM J. of R & D 44, 323 (2000).CrossRefGoogle Scholar
  26. 26.
    M. Otto, M. Bender, B. Hadam, B. Spanggenberg, and H. Kurz,Microelectro. Eng., (2000), 57/58, 361.Google Scholar
  27. 27.
    Lebib, M. Natali, S.P. Li, E. Cambril, L. Manin, Y. Chen, H. M. Janssen, R.P. Sijbesma and E.W Meijier,Microelectron. Ene. (2001), 57/58, 411.Google Scholar
  28. 28.
    Lebib, Ph. D. Thesis, Univeristé Paris 7, France (2001).Google Scholar
  29. 29.
    Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali and A. Pépin H. M. Janssen and R.P. Sijbesma,Microelectron. Eng. (2002) in press.Google Scholar
  30. 30.
    Y. Chen, A. Lebib, S. Li, D. Peyrade, M. Natali, A. Pepin and E. Cambril,Eur. Phys. J. Appl. Phys. (2000), 2, 223.CrossRefGoogle Scholar
  31. 31.
    Lebib, Y.Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud and H. Launois,Microelectron. Eng., (2000), 53, 175.CrossRefGoogle Scholar
  32. 32.
    Lebib, S. P. Li, M. Natali and Y. Chen,J. Appl. Phys. (2001), 89, 3892.CrossRefGoogle Scholar
  33. 33.
    M. Natali, A. Lebib, S.P. Li, E. Cambril,Y.Chen, J. Vac. Sci. & Technol. (2001), B19, 2779.CrossRefGoogle Scholar
  34. 34.
    W. Wu, B. Cui, X. Sun, W. Zhang, L. Zhuang, L. Kong, and S. Y. Chou,J. Vac. Sci. & Techno., (1998), B16, 3825.CrossRefGoogle Scholar
  35. 35.
    G. Simon, Ph. D. Thesis, Univeristé Paris Sud, France (1997).Google Scholar
  36. 36.
    T. Devolder, Y. Chen, H. Bernas, C. Chappert, J. PJamet, and E. Cambril,Appl. Phys. Lett., (1999), 74, 3383.CrossRefGoogle Scholar
  37. 37.
    T. Devolder, C. Chappert, V. Mathet, H. Bernas, Y. Chen, J. P. Jamet, and J. Ferré,J. Appl. Phys, (2000), 87, 8671.CrossRefGoogle Scholar
  38. 38.
    T. Devolder, C. Chappert, Y. Chen, E. Cambril, H. Launois, H. Bernas, J. P. Jamet, and J. Ferré,J. Vac. Sci. & Technol., (1999), B17, 3177.CrossRefGoogle Scholar
  39. 39.
    Y. B. Xu,, A. Hirohata, S. M. Gardiner, M. Tselepi, J. Rothman, J. Klauim, L. Lopez-Diaz, J. A. C. Bland , Y. Chen, E. Cambri, F. Rousseaux.,IEEE Trans Magn. 37, 2055 (2001).CrossRefGoogle Scholar
  40. 40.
    J. Rothman, M. Kläui, L. Lopez-Diaz, C.A.F. Vaz, A. Bleoch, J. A. C. Bland, Z. Cui, and R. Speeks,Phys. Rev. Lett., (2001), 86, 1098.CrossRefGoogle Scholar
  41. 41.
    S. P. Li, W. S. Lew, J. A. C. Bland, L. Lopez-Diaz, M. Natali, C. A. F. Vaz, Y. Chen,Nature, (2002), 415, 600.Google Scholar
  42. 42.
    S. P. Li, W. S. Lew, J. A. C. Bland, L. Lopez-Diaz, C. A. F. Vaz, M. Natali, Y. Chen.Phys. Rev. Lett., (2002), 88, 87202.CrossRefGoogle Scholar
  43. 43.
    S.Y. Chou, PR. Krauss and PJ. Renstrom,Science, (1998), 272, 85.CrossRefGoogle Scholar
  44. 44.
    A. Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud and H. Launois,Microelectron. Eng., (1999), 46, 319.CrossRefGoogle Scholar
  45. W. Zhang and S.Y. Chou, results presented in the EIPBN 2000 conference (USA).Google Scholar
  46. 46.
    Heidari, I. Maximov, And L. Montelius,J. Vac. Sci. & Technolo., (2000), 18, 3557.CrossRefGoogle Scholar
  47. 47.
    Y. Chen, F. Carcenac, V. Kottler, C. Chappert, N. Essaidi, H. Launois,J. Vac. Sci. Technol., (1998), B16, 3830.Google Scholar
  48. 48.
    E. Betzig, and J.K. Trautman,Science, (1992), 257, 189.CrossRefGoogle Scholar
  49. 49.
    V. Kottler, C. Chappert, N. Essaidi and Y. Chen,IEEE Trans. Mag. 34, 2012 (1998).CrossRefGoogle Scholar
  50. 50.
    G.A. Gibson, S. Shultz,J. Appl. Phys., (1993), 73, 4516.CrossRefGoogle Scholar
  51. 51.
    M. Hehn, K. Ounadjela, J. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert,Science, (1996), 272, 1782.CrossRefGoogle Scholar
  52. 52.
    Dieny, A. Lebib, Y. Chen;JMMM (2001).Google Scholar
  53. 53.
    J.N. Chapman, M.R. Scheinfein, J. Mag.Magn. Mater., (1999), 200, 729.CrossRefGoogle Scholar
  54. 54.
    M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon,Phys. Rev. Lett., (2001), 86 4676.CrossRefGoogle Scholar
  55. 55.
    M. Natali, A. Lebib, Y. Chen, L. Prejbeanu, U. Ebels, L. Buda, K. Ounadjela;Phys. Rev. Lett. in press.Google Scholar
  56. 56.
    A simulation code to calculate the magnetization configuration and its field evolution for 2D flat elements is described onhttp://www.math.nist.gov/oommf
  57. 57.
    S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L. D. Buda and K. Ounadjela,Phys. Rev. Lett., (2001), 86, 1102.CrossRefGoogle Scholar
  58. 58.
    Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Cambril,Microelectron. Eng., (2001), 57/58, 405.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Y. Chen
    • 1
  • M. Natali
    • 1
  • S. P. Li
    • 1
  • A. Lebib
    • 1
  1. 1.Laboratoire de Photonique et NanostructuresCNRSMarcoussisFrance

Personalised recommendations