Skip to main content

Alternative Lithography

An introduction

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Progress in nanotechnology depends upon the capability to fabricate nanostructures in a variety of materials with accuracy in the nanometre scale and sometimes in the atomic scale. Depending on application, there are varying degrees of strong specifications, which have to be met in industrially relevant processes due to manufacturability and costs considerations as, for example, in the electronics industry. However, it appears that less demanding conditions are needed for developments in optics, sensors and biologi-cal applications. In order for progress to be made, enabling nanofabrication techniques as tools for experiments to understand the underlying science and engineering in the nanometre scale, easily accessible and flexible nanofabrication approaches are required. These have to be suitable for investigations in, e.g., materials science, organic biologi-cal, nano-optics and the life sciences. Alternative techniques to cost-intensive or limited-access fabrication methods with nanometre resolution have been under biologi-cal for nearly two decades. One clear example is the evolving set of scanning probes techniques, which has become ubiquitous in many research areas. If one considers biologi-cal structures, i.e., where nanostructuring is carried out on a surface, as distinct from a three-dimensional nanofabrication or multi-layer self-assembly, then several emerging nanofabrication techniques can be discussed. Their classification depends on whether the nature of the patterning is chemical or physical, or its modality in time is parallel or sequential, or a hard or a soft mould or stamp is used, etc. The literature on the subject is increasing very rapidly and recent reviews on, for example, progress in micro-contact printing,1,2 scanning probe-based techniques 3 and nanoimprint-based lithography (NIL) techniques,4 have been published.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz and H.Wolf, IBM J. Res. & Dev.45 697 (2001).

    CAS  Google Scholar 

  2. Y. Xia, X-M. Zhao and G. M. Whitesides,Microelectr. Eng. 32, 255–68 (1996).

    Article  CAS  Google Scholar 

  3. P. Vettiger et al., Microelectronic Engineering 46 (1–4) 101 (1999).

    Article  Google Scholar 

  4. H.-C. Scheer, H. Schulz, T. Hoffmann and C. M. Sotomayor Torres, in: H. S. Nalwa (Ed.) Handbook of Thin Film Materials, vol. 5, Academic Press, place, 2002, pp 1–60.

    Google Scholar 

  5. R. Feynmann, talk at the California Institute of Technology, 29th December 1959.

    Google Scholar 

  6. H. Tan, A. Gilberston and S. Y. Chou,J Vac Sci Technol B 16 3926 (1998).

    Article  CAS  Google Scholar 

  7. B. Heidari, I. Maximov, E-L. Sarwe and L. Montelius,J. Vac.Sci.Technol B 18, 3552–6 (2000).

    Article  Google Scholar 

  8. T. Haatainen, J. Ahopelto, G. Gruetzner, M. Fink and K. Pfeiffer,Proc SPIE 3997 874–80 (2000).

    Article  Google Scholar 

  9. S. Y. Chou, P. R. Krauss and P. J. Renstrom,Appl. Phys. Lett. 76, 3114 (1995).

    Article  Google Scholar 

  10. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang,J. Vac, Sci Technol B 15, 2897 (1997).

    Article  CAS  Google Scholar 

  11. J. Wang, X.Sun, L. Chen and S. Y. Chou,Appl Phys Lett 75, 2767 (1999).

    Article  CAS  Google Scholar 

  12. A. Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud and H. Launois, Microelectronic Engeneering 46, 319 (1999).

    Article  Google Scholar 

  13. Z. Yu, S. J. Schablitsky and S. Y. Chou,Appl Phys Lett 74, 2381 (1999).

    Article  CAS  Google Scholar 

  14. J. Wang, S. Schablitsky, Z. Yu, W. Wy and S. Y. Chou,J Vac Sci Technol B 17, 2957 (1999).

    Article  CAS  Google Scholar 

  15. K. Pfeiffer, G. Bleidiessel, G. Gruetzner, H. Schulz, T. Hoffmann, H.-C. Scheer, C. M. Sotomayor Torres and J. Ahopelto, Microelectronic Engineering 46, 431 (1999). See alsohttp://www.microresist.de.

    Article  CAS  Google Scholar 

  16. H. Schulz, D. Lyebyedyev, H.-C. Scheer, K. Pfeiffer, G. Bleidiessel, G. Gruetzner and J. Ahopelto, J Vac Sci Technol B 18, 3582 (2000).

    Article  CAS  Google Scholar 

  17. T. Mäkela, T. Haatainen, J. Ahopelto and H. Isolato,J Vac. Sci. Technol. B 19, 487 (2001).

    Article  Google Scholar 

  18. K. Pfeiffer, M. Fink, G. Aherens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Grazcyk, L. Montelius, H. Schulz, H-C. Scheer and F. Steingrueber, Microelectronic Engineering 61–62, 393 (2002).

    Google Scholar 

  19. V. Studer, A. Pépin, and Y. Chen,Appl. Phys. Lett. 80 (19), May 13 (2002).

    Article  Google Scholar 

  20. M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius,Microelectronic Engineering 61–62, 441 (2002).

    Google Scholar 

  21. C. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther, E.-L. Sarwe, S. Zankovych, J. Ahopelto, L. Montelius, C. Mayer and C. M. Sotomayor Torres. To appear in Micro-electronic Engineering

    Google Scholar 

  22. K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, N. Roos, H. Schulz, H.-C. Scheer, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, L. Montelius and Ch. Cardinaud. To appear in Microelectronic Engineering.

    Google Scholar 

  23. W. Zhang and S. P. Chou,Appl Phys Lett 79 845 (2001).

    Article  CAS  Google Scholar 

  24. S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch and C. M. Sotomayor Torres,Nanotechnology 12, 91 (2001).

    Article  CAS  Google Scholar 

  25. C. Gourgon, C. Perret and G. Micounin,Microelectronic Engineering 61–62, 385 (2002).

    Google Scholar 

  26. K. Pfeiffer. M. Fink, G. Bleidissel, G. Gruetzner, H. Schulz, H.-C. Scheer, T. Hoffmann, C. M. Sotomayor Torres, F. Gaboriou and Ch. Cardonaud,Microelectronic Engineering 53, 411 (2000).

    Article  CAS  Google Scholar 

  27. F. Gaboriau, M. C. Perpignon, A. Barreau, G. Turban, Ch. Cardonaud, K. Pfeiffer, G. Bleidiessel and G. Gruetzner,Microelectronic Engineering 53, 501–505 (2002)

    Article  Google Scholar 

  28. M. V. Maximov, J. Seekamp et al., unpublished data.

    Google Scholar 

  29. S. Zankovych, I. Maximov, I. Shorubalko, J. Seekamp, M. Beck, S. Romanov, D. Reuter, P. Schafmeister, A. Wiek, J. Ahopelto, C. M. Sotomayor Torres and L. Montelius, To appear in Microelectronic Engineering

    Google Scholar 

  30. J. Seekamp, S. Zankovych, A. H. Heifer, P. Maury, C. M. Sotomayor Torres, G. Boettger, C. Liguda, M. Eich, B. Heidari, L. Montelius and J. Ahopelto,Nanotechnology 13 1 (2002)

    Article  Google Scholar 

  31. C. Clavijo-Cedeño, J. Seekamp, A. P. Kam, T. Hoffmann, S. Zankovych, C. M. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel and J. Ahopelto, Microelec-tronic Engineering 61–62 25 (2002)

    Google Scholar 

  32. M. Behl, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, R. Zentel and J. Ahopelto,Adv Mater 14 588 (2002)

    Article  CAS  Google Scholar 

  33. C. Kim, M. Stein and S. R. Forrest, Appl Phys Lett 80 4051 (2002)

    Article  CAS  Google Scholar 

  34. M D Austin and S Y Chou, Appl Phys Lett 81 4431 (2002)

    Article  CAS  Google Scholar 

  35. A. Lebib, S. P. Li, M Natali and Y. Chen,J. Appl Phys 89, 3892 (2001).

    Article  CAS  Google Scholar 

  36. P. R. Krauss and S. P. Chou, Appl Phys Lett 71 3174 (1997)

    Article  CAS  Google Scholar 

  37. B. G. Casey, D. R. S. Cumming, I.I. Khandaker, A. S. G. Curtis and C. D. W. Wilkinson, Microelectronic Engineering 46 125 (1999)

    Article  CAS  Google Scholar 

  38. J. Gierak, D. Mailly, G. Faini, J. L. Pelouard, P. Denk, F. Pardo, J. Y. Marzin, A. Septier, G. Schmid, J. Ferre, R. Hydman, C. Chappert, F. Flictein, B. Gayral and J.-M. Gerard,Microelectronic Engineering 57 865 (2002)

    Article  Google Scholar 

  39. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams and J. P. Dowling, Phus Rev Lett 85 2733 (2000)

    Article  CAS  Google Scholar 

  40. M. Muetzel, S. Tandelr, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspoehler and K. Buse, Phys Rev Lett 88, article no 083601-1 093601-3 (2002).

    Google Scholar 

  41. J. Brugger, J. W. Berenschot, S. Kuiper, W. Nijdam, B. Otter and M. Elwenspoek, Microelectronic Engi-neering 53 403 (2000)

    Article  CAS  Google Scholar 

  42. D. Pinner, J. Zhu, F. Xu and S. Hong, Science 283, 661 (1999)

    Article  Google Scholar 

  43. S. Hong and C. A. Mirkin, Science 288 1808 (2000)

    Article  CAS  Google Scholar 

  44. for a report see the PHANTOMS Newsletter, May 2002 Issue 6, p23 at http://www.phantomsnet.com

  45. S. Y. Chou, C. Keimei and J. Gu, Nature 417 835 (2002)

    Article  CAS  Google Scholar 

  46. S. Y. Chou, private communication

    Google Scholar 

  47. J. Ahopelto, private communication

    Google Scholar 

  48. H. Kurz, private communication

    Google Scholar 

  49. M. M. Deshmukh, D. C. Ralph, M. Thomas and J. Silcox. Appl. Phys. Lett. 75 11 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sotomayor Torres, C.M. (2003). Alternative Lithography. In: Sotomayor Torres, C.M. (eds) Alternative Lithography. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9204-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9204-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4836-8

  • Online ISBN: 978-1-4419-9204-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics