Skip to main content

Cytochrome P450-Derived Eicosanoids are Mediators of Ocular Surface Inflammation

  • Chapter
Advances in Prostaglandin, Leukotriene, and other Bioactive Lipid Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 525))

Abstract

Injury to the corneal surface evokes an inflammatory reaction which includes the release of arachidonic acid (AA) and, subsequently, the production of eicosanoids which have been implicated as inflammatory mediators. These eicosanoids are produced by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases (CYP). We have identified CYP as a primary inflammatory pathway in the corneal epithelium where it metabolizes AA to 12-hydroxyeicosanoids, primarily 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid [12-(R)-HETE] and 12(R)- hydroxy-5,8,14-eicosatrienoic acid [12(R)-HETrE]; both metabolites exhibit biological activities that are typical of inflammatory mediators including increased membrane permeability, vasodilation, Chemotaxis and angiogenesis. Indeed, numerous studies provided evidence that these metabolites are critical tissue-derived mediators of ocular surface inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sack, RA, Tan KO, Tan, A. Diumal tear cycle: Evidence of a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 1992; 33: 626–640.

    PubMed  CAS  Google Scholar 

  2. Holden, B.A. The Glenn A. Fry Award Lecture: The ocular response to contact lens wear. Optom Vis Sci 1989; 66: 717–733.

    Google Scholar 

  3. Conners MS, Stoltz RA, Webb SC, Rosenberg J, Dunn MW, Abraham NG, ML Schwartzman ML. A closed eye-contact lens model of corneal inflammation. I. Induction of cytochrome P450 arachidonic acid metabolism. Invest Ophthalmol Vis Sci 1995; 36: 828–840.

    PubMed  CAS  Google Scholar 

  4. Conners MS, Urbano F, Vafeas C, Stoltz RA, Dunn MW, Laniado Schwartzman M. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci. 1997; 38: 1963–1971.

    PubMed  CAS  Google Scholar 

  5. Brown SI, Wassermann HE, Dunn MW. Alkali burn of the cornea. Arch Ophthalmol. 1969; 82: 91–94.

    Article  PubMed  CAS  Google Scholar 

  6. Conners MS, Stoltz RA, Dunn MW, Levere RD, Abraham NG, Schwartzman ML. A closed eye-contact lens model of corneal inflammation. II. Inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae. Invest Ophthalmol Vis Sci 1995; 36: 841–850.

    PubMed  CAS  Google Scholar 

  7. Laniado-Schwartzman M, Abraham NG, Conners MS, Dunn MW, Levere RD, Kappas A. Heme oxygenase induction with attenuation of experimentally-induced corneal inflammation. Biochem Pharmacol. 1997; 53: 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  8. Mieyal PA, Dunn MW, Schwartzman ML. Detection of endogenous 12-hydroxyeicosatrienoic acid in human tear film. Invest Ophthalmol 2001; 42: 328–332.

    CAS  Google Scholar 

  9. Choi KU, Edelstein CL, Gengaro P, Schrier RW, Nemenoff RA. Hypoxia induces changes in phospholipase A2 in rat proximal tubules: evidence for multiple forms. Am J Physiol 1995; 269: F846–F853.

    PubMed  CAS  Google Scholar 

  10. Longmuir IS, Pashko L. The induction of cytochrome P450 by hypoxia. Adv Exp Med Biol 1976; 75: 171–175.

    PubMed  CAS  Google Scholar 

  11. Ou, LC, Healy J, Bonkowsky HL, Sinclair P. Hepatic cytochrome P450 in chronically hypoxemic rats. Biochem Biophys Res Commun 1980; 96: 1128–1134.

    Article  PubMed  CAS  Google Scholar 

  12. Tsubota K, Laing RA. Metabolic changes in the corneal epithelium resulting from hard contact lens wear. Cornea 1992; 11: 121–126.

    Article  PubMed  CAS  Google Scholar 

  13. Vafeas C, Mieyal PA, Urbano F, Falck JR, Chauhan K, Berman M, Laniado Schwartzman M. Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. J Pharmacol Exp Ther 1998; 287: 903–910.

    PubMed  CAS  Google Scholar 

  14. Mastyugin V, Aversa E, Vafeas C, Mieyal P, Laniado-Schwartzman M. Hypoxia-Induced Production of 12-Hydroxyeicosanoids in the Corneal Epithelium: Involvement of a CYP4B1 Isoform. J Pharmacol Exp Ther 1999; 289:1611–1619.

    PubMed  CAS  Google Scholar 

  15. Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Laniado-Schwartzman M. Corneal epithelial VEGf and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res 2001; 23:1–10.

    Article  PubMed  CAS  Google Scholar 

  16. Cotran RS, Kumar V, Robbins SL. Robbins Pathologic Basis of Disease. Philadelphia, WB Saunders Co. 1989, 39–86.

    Google Scholar 

  17. Folkman J, Brem H. Angiogenesis and inflammation. In Gallin, J.I., I. M. Goldstein, and A. Snyderman, eds. Inflammation: Basic principles and clinical correlation. New York, Raven Press. 1992, 821–839.

    Google Scholar 

  18. Klintworth, G.K. Corneal Angiogenesis: A Comprehensive Critical Review. New York, Springer-Verlag. 1990.

    Google Scholar 

  19. Murphy RC, Falck JR, Lumin S, Yadagiri P, Zirrolli JA, Balazy M, Masferrer JL, Abraham NG, Schwartzman ML. 12(R)-hydroxyeicosatetrienoic acid: a vasodilator cytochrome P450 dependent arachidonate metabolite from bovine corneal epithelium. J Biol Chem 1998; 263:17197–17202.

    Google Scholar 

  20. Masferrer J, Murphy RC, Pagano PJ, Dunn MW, Schwartzrran ML. The ocular effects of a novel arachidonate metabolite formed by bovine corneal epithelium. Invest Ophthalmol Vis Sci 1989; 30:454–460.

    PubMed  CAS  Google Scholar 

  21. Masferrer JL, Rimarachin JA, Gerritsen ME, Falck JR, Yadagiri P, Dunn MW, Schwartzman ML. 12(R)-hydroxyeicosatrienoic acid, a potent chemotactic and angiogenic factor produced by the cornea. Exp Eye Res 1991; 52: 417–424.

    Article  PubMed  CAS  Google Scholar 

  22. Stoltz RA, Conners MS, Gerritsen ME, Abraham NG, Laniado-Schwartzman M. Direct stimulation of limbal microvessel endothelial cell proliferation and capillary formation in vitro by a corneal-derived eicosanoid. Am J Pathol 1996; 148:129–139.

    PubMed  CAS  Google Scholar 

  23. Mieyal PA, Bonazzi A, Jiang H, Dunn MW, Laniado-Schwartzman M. The effect of hypoxia on endogenous corneal epithelial eicosanoids. Invest Ophthalmol Vis Sci 2000;41:2170–2176.

    PubMed  CAS  Google Scholar 

  24. Stoltz RA, Laniado-Schwartzman M. High affinity binding sites for 12(R)-hydroxyeicosatrienoic acid [12(R)-HETrE] in microvessel endothelial cells. J Ocular Pharmacol Ther 1997; 13: 191–199.

    Article  CAS  Google Scholar 

  25. Stoltz, RA, Abraham NG, Laniado-Schwartzman M. The role of NFkB in the angiogenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci USA 1996; 93:2832–2837.

    Article  PubMed  CAS  Google Scholar 

  26. Laniado-Schwartzman M, Lavrovsky Y, Stoltz RA, Conners MS, Falck JR, Chauhan K, Abraham NG. Activation of nuclear factor kB and oncogene exoression by 12(R)-hydroxyeicosatrienoic acid, an angiogenic factor in microvessel endothelial cells. J Biol Chem 1994; 269: 24321–24327.

    PubMed  CAS  Google Scholar 

  27. Mezentsev A, Seta F, Dunn MW, Ono N, Falck JR, Laniado-Schwartzman M. Eicosanoid regulation of vascular endothelial growth factor expression and angiogenesis in microvessel endothelial cells. J Biol Chem 2002; 277: 18670–18676.

    Article  PubMed  CAS  Google Scholar 

  28. Kerr LD, Inoue J, Verma IM. Signal transduction: The nuclear target. Curr Opin Cell Biol 1992; 4: 496–501.

    Article  PubMed  CAS  Google Scholar 

  29. Conners MS, Godfrey H, Chauhan K, Falck JR, Laniado-Schwartzman M. Enhancement of delayed-type hypersensitivity inflammatory reactions by 12(R)-hydroxy-5,8,14-eicosatrienoic acid. J Invest Dermatol 1994; 104: 1–5.

    Google Scholar 

  30. Holtzman MJ, Turk J, Pentland A. A regiospecific monooxygenase with a novel stereopreference is the major pathway for arachidonic acid oxygenation in isolated epidermal cells. J Clin Invest 1989; 84: 1446–1453.

    Article  PubMed  CAS  Google Scholar 

  31. Van Wauwe J, Coene M-C, Van Nyen G, Cools W, Goossen J, LeJeune, Lauwers W, Janssen PAJ. NADPH-dependent formation of 15-and 12-hydroxyeicosatetraenoic acid from arachidonic acid by rat epidermal microsomes. Eicosanoids 1991; 4:155–163.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laniado-Schwartzman, M., Dunn, M.W. (2003). Cytochrome P450-Derived Eicosanoids are Mediators of Ocular Surface Inflammation. In: Yazici, Z., Folco, G.C., Drazen, J.M., Nigam, S., Shimizu, T. (eds) Advances in Prostaglandin, Leukotriene, and other Bioactive Lipid Research. Advances in Experimental Medicine and Biology, vol 525. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9194-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9194-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4831-3

  • Online ISBN: 978-1-4419-9194-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics