Advertisement

Cytochrome P450-Derived Eicosanoids are Mediators of Ocular Surface Inflammation

  • Michal Laniado-Schwartzman
  • Michael W. Dunn
Chapter
  • 141 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 525)

Abstract

Injury to the corneal surface evokes an inflammatory reaction which includes the release of arachidonic acid (AA) and, subsequently, the production of eicosanoids which have been implicated as inflammatory mediators. These eicosanoids are produced by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases (CYP). We have identified CYP as a primary inflammatory pathway in the corneal epithelium where it metabolizes AA to 12-hydroxyeicosanoids, primarily 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid [12-(R)-HETE] and 12(R)- hydroxy-5,8,14-eicosatrienoic acid [12(R)-HETrE]; both metabolites exhibit biological activities that are typical of inflammatory mediators including increased membrane permeability, vasodilation, Chemotaxis and angiogenesis. Indeed, numerous studies provided evidence that these metabolites are critical tissue-derived mediators of ocular surface inflammation.

Keywords

Corneal Epithelium Corneal Thickness Corneal Surface Contact Lens Wear Hypoxic Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sack, RA, Tan KO, Tan, A. Diumal tear cycle: Evidence of a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 1992; 33: 626–640.PubMedGoogle Scholar
  2. 2.
    Holden, B.A. The Glenn A. Fry Award Lecture: The ocular response to contact lens wear. Optom Vis Sci 1989; 66: 717–733.Google Scholar
  3. 3.
    Conners MS, Stoltz RA, Webb SC, Rosenberg J, Dunn MW, Abraham NG, ML Schwartzman ML. A closed eye-contact lens model of corneal inflammation. I. Induction of cytochrome P450 arachidonic acid metabolism. Invest Ophthalmol Vis Sci 1995; 36: 828–840.PubMedGoogle Scholar
  4. 4.
    Conners MS, Urbano F, Vafeas C, Stoltz RA, Dunn MW, Laniado Schwartzman M. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci. 1997; 38: 1963–1971.PubMedGoogle Scholar
  5. 5.
    Brown SI, Wassermann HE, Dunn MW. Alkali burn of the cornea. Arch Ophthalmol. 1969; 82: 91–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Conners MS, Stoltz RA, Dunn MW, Levere RD, Abraham NG, Schwartzman ML. A closed eye-contact lens model of corneal inflammation. II. Inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae. Invest Ophthalmol Vis Sci 1995; 36: 841–850.PubMedGoogle Scholar
  7. 7.
    Laniado-Schwartzman M, Abraham NG, Conners MS, Dunn MW, Levere RD, Kappas A. Heme oxygenase induction with attenuation of experimentally-induced corneal inflammation. Biochem Pharmacol. 1997; 53: 1069–1075.PubMedCrossRefGoogle Scholar
  8. 8.
    Mieyal PA, Dunn MW, Schwartzman ML. Detection of endogenous 12-hydroxyeicosatrienoic acid in human tear film. Invest Ophthalmol 2001; 42: 328–332.Google Scholar
  9. 9.
    Choi KU, Edelstein CL, Gengaro P, Schrier RW, Nemenoff RA. Hypoxia induces changes in phospholipase A2 in rat proximal tubules: evidence for multiple forms. Am J Physiol 1995; 269: F846–F853.PubMedGoogle Scholar
  10. 10.
    Longmuir IS, Pashko L. The induction of cytochrome P450 by hypoxia. Adv Exp Med Biol 1976; 75: 171–175.PubMedGoogle Scholar
  11. 11.
    Ou, LC, Healy J, Bonkowsky HL, Sinclair P. Hepatic cytochrome P450 in chronically hypoxemic rats. Biochem Biophys Res Commun 1980; 96: 1128–1134.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsubota K, Laing RA. Metabolic changes in the corneal epithelium resulting from hard contact lens wear. Cornea 1992; 11: 121–126.PubMedCrossRefGoogle Scholar
  13. 13.
    Vafeas C, Mieyal PA, Urbano F, Falck JR, Chauhan K, Berman M, Laniado Schwartzman M. Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. J Pharmacol Exp Ther 1998; 287: 903–910.PubMedGoogle Scholar
  14. 14.
    Mastyugin V, Aversa E, Vafeas C, Mieyal P, Laniado-Schwartzman M. Hypoxia-Induced Production of 12-Hydroxyeicosanoids in the Corneal Epithelium: Involvement of a CYP4B1 Isoform. J Pharmacol Exp Ther 1999; 289:1611–1619.PubMedGoogle Scholar
  15. 15.
    Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Laniado-Schwartzman M. Corneal epithelial VEGf and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res 2001; 23:1–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Cotran RS, Kumar V, Robbins SL. Robbins Pathologic Basis of Disease. Philadelphia, WB Saunders Co. 1989, 39–86.Google Scholar
  17. 17.
    Folkman J, Brem H. Angiogenesis and inflammation. In Gallin, J.I., I. M. Goldstein, and A. Snyderman, eds. Inflammation: Basic principles and clinical correlation. New York, Raven Press. 1992, 821–839.Google Scholar
  18. 18.
    Klintworth, G.K. Corneal Angiogenesis: A Comprehensive Critical Review. New York, Springer-Verlag. 1990.Google Scholar
  19. 19.
    Murphy RC, Falck JR, Lumin S, Yadagiri P, Zirrolli JA, Balazy M, Masferrer JL, Abraham NG, Schwartzman ML. 12(R)-hydroxyeicosatetrienoic acid: a vasodilator cytochrome P450 dependent arachidonate metabolite from bovine corneal epithelium. J Biol Chem 1998; 263:17197–17202.Google Scholar
  20. 20.
    Masferrer J, Murphy RC, Pagano PJ, Dunn MW, Schwartzrran ML. The ocular effects of a novel arachidonate metabolite formed by bovine corneal epithelium. Invest Ophthalmol Vis Sci 1989; 30:454–460.PubMedGoogle Scholar
  21. 21.
    Masferrer JL, Rimarachin JA, Gerritsen ME, Falck JR, Yadagiri P, Dunn MW, Schwartzman ML. 12(R)-hydroxyeicosatrienoic acid, a potent chemotactic and angiogenic factor produced by the cornea. Exp Eye Res 1991; 52: 417–424.PubMedCrossRefGoogle Scholar
  22. 22.
    Stoltz RA, Conners MS, Gerritsen ME, Abraham NG, Laniado-Schwartzman M. Direct stimulation of limbal microvessel endothelial cell proliferation and capillary formation in vitro by a corneal-derived eicosanoid. Am J Pathol 1996; 148:129–139.PubMedGoogle Scholar
  23. 23.
    Mieyal PA, Bonazzi A, Jiang H, Dunn MW, Laniado-Schwartzman M. The effect of hypoxia on endogenous corneal epithelial eicosanoids. Invest Ophthalmol Vis Sci 2000;41:2170–2176.PubMedGoogle Scholar
  24. 24.
    Stoltz RA, Laniado-Schwartzman M. High affinity binding sites for 12(R)-hydroxyeicosatrienoic acid [12(R)-HETrE] in microvessel endothelial cells. J Ocular Pharmacol Ther 1997; 13: 191–199.CrossRefGoogle Scholar
  25. 25.
    Stoltz, RA, Abraham NG, Laniado-Schwartzman M. The role of NFkB in the angiogenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci USA 1996; 93:2832–2837.PubMedCrossRefGoogle Scholar
  26. 26.
    Laniado-Schwartzman M, Lavrovsky Y, Stoltz RA, Conners MS, Falck JR, Chauhan K, Abraham NG. Activation of nuclear factor kB and oncogene exoression by 12(R)-hydroxyeicosatrienoic acid, an angiogenic factor in microvessel endothelial cells. J Biol Chem 1994; 269: 24321–24327.PubMedGoogle Scholar
  27. 27.
    Mezentsev A, Seta F, Dunn MW, Ono N, Falck JR, Laniado-Schwartzman M. Eicosanoid regulation of vascular endothelial growth factor expression and angiogenesis in microvessel endothelial cells. J Biol Chem 2002; 277: 18670–18676.PubMedCrossRefGoogle Scholar
  28. 28.
    Kerr LD, Inoue J, Verma IM. Signal transduction: The nuclear target. Curr Opin Cell Biol 1992; 4: 496–501.PubMedCrossRefGoogle Scholar
  29. 29.
    Conners MS, Godfrey H, Chauhan K, Falck JR, Laniado-Schwartzman M. Enhancement of delayed-type hypersensitivity inflammatory reactions by 12(R)-hydroxy-5,8,14-eicosatrienoic acid. J Invest Dermatol 1994; 104: 1–5.Google Scholar
  30. 30.
    Holtzman MJ, Turk J, Pentland A. A regiospecific monooxygenase with a novel stereopreference is the major pathway for arachidonic acid oxygenation in isolated epidermal cells. J Clin Invest 1989; 84: 1446–1453.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Wauwe J, Coene M-C, Van Nyen G, Cools W, Goossen J, LeJeune, Lauwers W, Janssen PAJ. NADPH-dependent formation of 15-and 12-hydroxyeicosatetraenoic acid from arachidonic acid by rat epidermal microsomes. Eicosanoids 1991; 4:155–163.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Michal Laniado-Schwartzman
    • 1
  • Michael W. Dunn
    • 2
  1. 1.Department of PharmacologyNew York, Medical CollegeValhallaUSA
  2. 2.Department of OphthalmologyNew York Medical, CollegeValhallaUSA

Personalised recommendations