Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 523))

  • 459 Accesses

Abstract

It is clinical common sense that the dose of anaesthetics must be reduced in the elderly. The therapeutic window of most hypnotics, opiates and muscle relaxants is wide. The most serious side effects of the newer therapeutics are hypotension and bradycardia. These adverse effects are often due to overdosing, but even with appropriate dosing for the desired effect, such as hypnosis, haemodynamic changes can be observed. At the end of anaesthesia the desired intra-operative effect becomes an undesired effect if it is not terminated in a timely manner. That is, prolonged sedation and residual muscle relaxation can harm the patient in the postoperative period. Prolonged analgesia is not a concern of opiate administration but respiratory depression, which is clinically irrelevant in the ventilated patient, becomes a serious side effect during the recovery period. Dosing recommendations of anaesthetics are nearly uniformly based on weight. Theoretically this dosing approach is based on the notion that drug distribution is linearly correlated with weight. In other disciplines, for instance oncology, dosing is based on body surface area. Weight and body surface area are covariates of drug distribution and elimination. In the past, whether to dose proportional to weight or to body surface area was based more on tradition than on scientific reasons.1 There are other covariates, which should be explored and probably included into dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Ratain, Body-surface area as a basis for dosing of anticancer agents: science, myth, or habit? Science 16, 2297–2298 (1998).

    CAS  Google Scholar 

  2. E. L. Youngs, Shafer SL, Pharmacokinetic parameters relevant to recovery from opioids, Anesthesiology 81, 833–842 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. J. Sprung, Ogletree-Hughes ML, Moravec CS: The effects of etomidate on the contractility of failing and nonfailing human heart muscle, Anesth Analg 91, 8–75 (2000).

    Google Scholar 

  4. B. E. Filner, Karliner JS: Alterations of normal left ventricular performance by general anesthesia. Anesthesiology 45, 610–21 (1976).

    Article  PubMed  CAS  Google Scholar 

  5. F. Kehl, Kress TT, Mraovic B, Hettrick DA, Kersten JR, Warltier DC, Pagel PS, Propofol alters left atrial function evaluated with pressure-volume relations in vivo, Anesth Analg 94, 1421–6 (2002).

    PubMed  CAS  Google Scholar 

  6. B. Preckel, Ebel D, Mullenheim J, Frabetadorf J, Thamer V, Schlack W, The direct myocardial effects of xenon in the dog heart in vivo, Anesth Analg 94, 545–51 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. H. P. Gelissen, Epema AH, Henning RH, Krijnen HJ, Hennis PJ, den Hertog A, Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle, Anesthesiology 84,397– 403 (1996).

    Article  Google Scholar 

  8. L. Berntman, Rosberg B, Shweikh I, Yousef H, Atracurium and pancuronium in renal insufficiency, Acta Anaesthesiol Scand 33, 48–52 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. S. Gelman, Fowler KC, Smith LR, Liver circulation and function during isoflurane and halothane anesthesia, Anesthesiology 61, 726–30 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. P. F. Wouters, Van de Velde MA, Marcus MA, Deruyter HA, Van Aken H, Hemodynamic changes during induction of anesthesia with eltanolone and propofol in dogs, Anesth Analg 81, 125–31 (1995).

    PubMed  CAS  Google Scholar 

  11. H. J. Lemmens, Burm AG, Bovill JG, Hennis PJ, Gladines MP, Pharmacodynamics of alfentanil. The role of plasma protein binding, Anesthesiology 76, 65–70 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. M. D. Tasch, Pnebe HJ, The autonomic nervous system and geriatric anesthesia. The aged cardiovascular risk patient, Int Anesthesiol Clin 26, 143–51 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. H. J. Priebe, The aged cardiovascular risk patient, Br J Anaesth 85, 763–78 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. M. Naguib, Flood P, McArdle JJ, Brenner HR, Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist, Anesthesiology 96, 202–31 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. J. H. Christensen, Andreasen F, Jansen JA, Pharmacokinetics and pharmacodynamics of thiopentone, A comparison between young and elderly patients, Anaesthesia 37, 398–404 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. J. H. Christensen, Andreasen F, Jansen JA, Influence of age and sex on the pharmacokinetics of thiopentone, Br J Anaesth 53, 1189–95 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. T. D. Homer, Stanski DR, The effect of increasing age on thiopental disposition and anesthetic requirement, Anesthesiology 62, 714–724 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. W. B. Gentry, Krejcie TC, Henthorn TK, Shanks CA, Howard KA, Gupta DK, Avram MJ, Effect of infusion rate on thiopental dose-response relationships. Assessment of a pharmacokinetic-pharmacodynamic model, Anesthesiology 81, 316–24 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. T. Kazama, Ikeda K, Morita K, Kikura M, Ikeda T, Kurita T, Sato S, Investigation of effective anesthesia induction doses using a wide range of infusion rates with undiluted and diluted propofol, Anesthesiology 92, 1017–28 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. M. J. Avram, Krejcie TC, Henthorn TK, The relationship of age to the pharmacokinetics of early drug distribution: the concurrent disposition of thiopental and indocyanine green, Anesthesiology 72, 403–411 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. D. R. Stanski, Maitre PO, Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited, Anesthesiology 72,412–422 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. MJ. Avram, Sanghvi R, Henthorn TK, Krejcie TC, Shanks CA, Fragen RJ, Howard KA, Kaczynski DA, Determinants of thiopental induction dose requirements, Anesthesia and Analgesia 76,10–17 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. A. Steib, Freys G, Beller JP, Curzola U, Otteni JC, Propofol in elderly high risk patients. A comparison of haemodynamic effects with thiopentone during induction of anaesthesia, Anaesthesia 43 Suppl: 111–4 (1988).

    Article  PubMed  Google Scholar 

  24. T. Kirkpatrick, Cockshott ID, Douglas EJ, Nimmo WS: Pharmacokinetics of propofol (diprivan) in elderly patients. Br. J. Anaesth 60, 146–150 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. G. L. Scheepstra, Booij LH, Rutten CL, Coenen LG, Propofol for induction and maintenance of anaesthesia: comparison between younger and older patients, Br J Anaesth 62, 54–60 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. J. E. Peacock, Spiers SP, McLauchlan GA, Edmondson WC, Berthoud M, Reilly CS, Infusion of propofol to identify smallest effective doses for induction of anaesthesia in young and elderly patients, Br J Anaesth 69,363–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. J. M. Bailey, Mora CT, Shafer SL, Pharmacokinetics of propofol in adult patients undergoing coronary revascularization. The Multicenter Study of Perioperative Ischemia Research Group, Anesthesiology 84, 1288–1297 (1992).

    Article  Google Scholar 

  28. E. Gepts, Jonckheer K, Maes V, Sonck W, Camu F, Disposition kinetics of propofol during alfentanil anaesthesia, Anaesthesia 43, Suppl: 8–13 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. E. Gepts, Camu F, Cockshott ID, Douglas EJ, Disposition of propofol administered as constant rate intravenous infusions in humans, Anesthesia and Analgesia 66, 1256–1263 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. B. Marsh, White M, Morton N, Kenny GN, Pharmacokinetic model driven infusion of propofol in children. Br. J. Anaesth 67, 41–48 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. B. K. Kataria, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL, The pharmacokinetics of propofol in children using three different data analysis approaches, Anesthesiology 80, 104–122(1994).

    Article  PubMed  CAS  Google Scholar 

  32. A. Shafer, Doze VA, Shafer SL, White PF, Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia, Anesthesiology 69, 348–356 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. I. Murat, Billard V, Vernois J, Zaouter M, Marsol P, Souron R, Farinotti R, Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches, Anesthesiology 84, 526–32 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. T. W. Schnider, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ, The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers, Anesthesiology 88,1170–1182 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. J. Schuttler, Ihmsen H, Population pharmacokinetics of propofol: a multicenter study, Anesthesiology 92, 727–38 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. J. Vuyk, Schnider T, Engbers F, Population pharmacokinetics of propofol for target-controlled infusion (TCI) in the elderly, Anesthesiology 93,1557–60 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. T. W. Schnider, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ, The influence of age on propofol pharmacodynamics, Anesthesiology 90:1502–16 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Wang, Kikuchi T, Sakai M, Wu JL, Sato K, Okumura F, Age-related modifications of effects of ketamine and propofol on rat hippocampal acetylcholine release studied by in vivo brain microdialysis, Acta Anaesthesiol Scand 44, 112–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. H. Keita, Lasocki S, Henzel-Rouelle D, Desmonts JM, Mantz J, Aging decreases the sensitivity of the GAB A carrier to propofol and etomidate, Br J Anaesth 81, 249–50 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. T. Kazama, Ikeda K, Morita K, Kikura M, Doi M, Ikeda T, Kurita T, Nakajima Y, Comparison of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index in elderly and younger patients, Anesthesiology 90, 1517–27 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. T. Kazama, Takeuchi K, Ikeda K, Ikeda T, Kikura M, Iida T, Suzuki S, Hanai H, Sato S, Optimal propofol plasma concentration during upper gastrointestinal endoscopy in young, middle-aged, and elderly patients, Anesthesiology 93, 662–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. G. L. Ludbrook, Upton RN, Grant C, Martinez A, A compartmental analysis of the pharmacokinetics of propofol in sheep, J Pharmacokinet Biopharm 27, 329–38 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. R. N. Upton, Ludbrook GL, Grant C, Martinez AM, Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration [see comments], Anesth Analg 89, 545–52 (1999).

    PubMed  CAS  Google Scholar 

  44. Y. U. Adachi, Watanabe K, Higuchi H, Satoh T, The determinants of propofol induction of anesthesia dose, Anesth Analg 92, 656–61 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. R.N. Upton, Ludbrook GL, A model of the kinetics and dynamics of induction of anaesthesia in sheep: variable estimation for thiopental and comparison with propofol, Br J Anaesth 82, 890–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. T. C. Krejcie, Avram MJ, What determines anesthetic induction dose? It’s the front-end kinetics, doctor! Anesth Analg 89, 541–4 (1999).

    PubMed  CAS  Google Scholar 

  47. I. E. Leonard, Myles PS, Target-controlled intravenous anaesthesia with bispectral index monitoring for thoracotomy in a patient with severely impaired left ventricular function, Anaesth Intensive Care 28, 318– 21 (2000).

    PubMed  CAS  Google Scholar 

  48. J. B. Bentley, Borel JD, Nenad RE, Jr., Gillespie TJ, Age and fentanyl pharmacokinetics. Anesth Analg 61, 968–71 (1982).

    Article  PubMed  CAS  Google Scholar 

  49. J. C. Scott, Stanski DR, Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation, J Pharmacol Exp Ther 240: 159–166 (1987).

    PubMed  CAS  Google Scholar 

  50. H. Helmers, Van Peer A, Woestenborghs R, Noorduin H, Heykants J, Alfentanil kinetics in the elderly, Clin Pharmacol Ther 36: 239–43 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. H. J. Lemmens, Burm AG, Hennis PJ, Gladines MP, Bovill JG, Influence of age on the pharmacokinetics of alfentanil. Gender dependence, Clin Pharmacokinet 19, 416–22 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. P. O. Maitre, Vozeh S, Heykants J, Thomson DA, Stanski DR, Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients, Anesthesiology 66, 3–12 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. P. O. Maitre, Ausems ME, Vozeh S, Stanski DR, Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil, Anesthesiology 68, 59–67, (1988).

    Article  PubMed  CAS  Google Scholar 

  54. D. B. Raemer, Buschman A, Varvel JR, Philip BK, Johnson MD, Stein DA, Shafer SL, The prospective use of population pharmacokinetics in a computer-driven infusion system for alfentanil, Anesthesiology 73, 66–72 (1990)

    Article  PubMed  CAS  Google Scholar 

  55. H. J. Lemmens, Burm AG, Bovill JG, Hennis PJ, Pharmacodynamics of alfentanil as a supplement to nitrous oxide anaesthesia in the elderly patient, Br J Anaesth 61, 173–9 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. H. J. Lemmens, Bovill JG, Hennis PJ, Burm AG, Age has no effect on the pharmacodynamics of alfentanil, Anesth Analg 67, 956–60 (1988).

    Article  PubMed  CAS  Google Scholar 

  57. C. F. Minto, Schnider TW, Shafer SL, Pharmacokinetics and Pharmacodynamics of Remifentanil. II Model Application, Anesthesiology 86, 24–33 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. C. F. Minto, Howe C, Wishart S, Conway AJ, Handelsman DJ, Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: effects of ester, injection site and injection volume, J Pharmacol Exp Ther 281, 93–102 (1997).

    PubMed  CAS  Google Scholar 

  59. T. D. Egan, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL, The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers, Anesthesiology 79, 881–892(1993).

    Article  PubMed  CAS  Google Scholar 

  60. T. D. Egan, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL, Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers, Anesthesiology 84, 821–833 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. CL. Westmoreland, Hoke JF, Sebel PS, Hug CCJ, Muir KT, Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery, Anesthesiology 79, 893–903 (1993).

    Article  PubMed  CAS  Google Scholar 

  62. D. R. Drover, Lemmens HJ, Population pharmacodynamics and pharmacokinetics of remifentanil as a supplement to nitrous oxide anesthesia for elective abdominal surgery, Anesthesiology 89, 869–877 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. T. W. Schnider, Shafer SL, Evolving clinically useful predictors of recovery from intravenous anesthetics, Anesthesiology 83, 902–905 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schnider, T.W., Minto, C.F. (2003). Age Related Changes of the PK-PD of Intravenous Anaesthetics. In: Vuyk, J., Schraag, S. (eds) Advances in Modelling and Clinical Application of Intravenous Anaesthesia. Advances in Experimental Medicine and Biology, vol 523. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9192-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9192-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4830-6

  • Online ISBN: 978-1-4419-9192-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics