Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 523))

Abstract

Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) allow researchers to study brain function in vivo. These techniques are used to refine our understanding of the nature of anaesthetic effects as well as of the influence of anaesthetic drugs on sensory and pain transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Raichle, W. Martin, Herscovitch P, Mintun M, Markham J, Brain blood flow measured with intravenous H2O15 II. Implementation and validation, JfNucl Med 24, 790–8, (1983)

    CAS  Google Scholar 

  2. M. Kato, Ueno T, Black P, Regional cerebral blood flow of the main visual pathways during photic stimulation of the retina in intact and split-brain monkeys, Exp Neurol 42, 65–77 (1974)

    Article  PubMed  CAS  Google Scholar 

  3. A. Villringer, Understanding functional neuroimaging methods based on neurovascular coupling, Adv Exp Med Biol 413, 177–93(1997).

    PubMed  CAS  Google Scholar 

  4. G.B. Saha, Maclntyre W.J, Go R.T., Radiopharmaceuticals for brain imaging, Semin Nucl Med 24, 324–49 (1994)

    Article  PubMed  CAS  Google Scholar 

  5. M.I. Posner, Petersen S.E., Fox P.T., Raichle M.E., Localization of cognitive operations in the human brain, Science 240, 1627–31(1988)

    Article  PubMed  CAS  Google Scholar 

  6. D. Le Bihan, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V, Fuctional magnetic resonance imaging of the brain, Annals of Internal Medicine 122, 296–303 (1995).

    PubMed  Google Scholar 

  7. S. Ogawa, Tank D.W., Menon R., Ellermann J.M., Kim S-G, Merkle H, Ugurbil K, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc Natl Acad Sci 89, 5951–5 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. M.T. Alkire, Haier R.J., Barker S.J., Shah N.K., Wu J.C., Kao J., Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography, Anesthesiology 82, 393–403 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. M.T. Alkire, Quantitative EEG correlations with brain glucose metabolic rate during anesthesia volunteers, Anesthesiology 89, 323–33 (2001).

    Article  Google Scholar 

  10. P. Fiset P, Paus T., Daloze T., Plourde G., Meuret P., Bonhomme V., Hajj-Ali N., Backman SB., Evans A.C., Brain mechanisms of propofol-induced loss of consciousness in humans: a Positron Emission Tomography study, J Neurosci 19, 5506–13 (1999).

    PubMed  Google Scholar 

  11. R.A. Veselis, Reinsel R.A., Beattie B.J., Mawlawi O.R., Feshchenko V.A., DiResta G.R., Larson S.M., Blasberg R.G., Midazolam changes cerebral blood flow in discrete brain regions, Anesthesiology 87, 1106–17 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. M.T. Alkire, Haier R.J., Fallon J.H., Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurrophysiologic basis of anesthetic-induced unconsciousness, Consciousness and Cognition 9, 370–86 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. R.C. Coghill, Talbot J.D., Evans A.C., Meyer E., Gjedde A., Bushnell M.C., Duncan G.H., Distributed processing of pain and vibration by the human brain, J Neurosci 14, 4095–108 (1994).

    PubMed  CAS  Google Scholar 

  14. J.D. Talbot, Marret S, Evans A.C., Meyer E, Bushnell M.C., Duncan G.H., Multiple representations of pain in human cerebral cortex, Science 251, 1355–7 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. V. Bonhomme, Fiset P, Meuret P, Backman S, Plourde G, Paus T, Bushnell C, Evans A, Effect of propofol-induced general anesthesia on changes in regional cerebral blood flow elicited by vibrotactile stimulation: a positron emission tomography study, J Neurophysiol 85, 1299–308 (2001).

    PubMed  CAS  Google Scholar 

  16. R.K. Hofbauer, Fiset P, Plourde G, Backman S.B., Bushnell M.C., Cortical correlates of the conscious experience of pain, J Neurosci, Submitted (2002).

    Google Scholar 

  17. F. Gyulai, L. Firestone, J. Price, P. Winter, In vivo imaging of volatile anesthetic action at the 5HT2A- receptor (5HT 2 a-R) in humans: a quantitative positron emission tomography (PET) study, Society for Neuroscience 23, 59.18 (1997).

    Google Scholar 

  18. F.E. Gyulai, Mintum M.A., Firestone L.L., Dose-dependent enhancement of in vivo GABAA-benzodiazepine receptor binding by isoflurane, Anesthesiology 95, 585–93 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. S.L. Dewey, Brodie J.D., Fowler J.S., MacGregor R.R., Schyler D.J., King P.T., Alexoff D.L., Volkow N.D., Shiue C-L, Wolf A.P., Bendriem B, Positron Emission Tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain, Synapse 6, 321–7 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. U. Ebert, Oertel R, Kirch W: Physostigmine reversal of midazolam-induced electroencephalographic changes in healthy subjects, Clin Pharmacol Ther 67, 538–48 (2001).

    Article  Google Scholar 

  21. A.A. Artru, Hui GS, Physostigmine reversal of general anesthesia for intraoperative neurological testing: Associated EEG changes, Anesth Analg 65, 1059–62, (1986).

    PubMed  CAS  Google Scholar 

  22. P. Hartvig, Lindstrbm B, Petterson E, Wiklund L, Reversal of postoperative somnolence using a two-rate infusion of physostigmine, Acta Anaesthesiol Scand 33, 681–5 (1986).

    Article  Google Scholar 

  23. P. Meuret, Backman S.B., Bonhomme V., Plourde G, Fiset P, Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers, Anesthesiology 93, 708–17 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. A. Toro-Matos, Rendon-Platas A.M, Avila-Valdez E., Villarreal-Guzman R.A., Physostigmine antagonizes ketamine, Anesth Analg 59, 764–7 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. M. Talbot, G. Plourde, S.B. Backman, D. Chartrand, P. Fiset, Effect of physostigmine on the loss of consciousness and analgesia produced by remifentanil, Anesthesiology 93, A389 (2000).

    Article  Google Scholar 

  26. R. Lydic R, Biebuyck JF, Sleep neurobiology: relevance for mechanistic studies of anaesthesia, Br J Anaesth 72, 506–8 (1994).

    Article  PubMed  Google Scholar 

  27. R. Lydic, Baghdoyan H.A., Cholinergic contribution to the control of consciousness, Anesthesia: Biologic Foundations. Edited by Yaksh TLeal. Philadelphia, Lippincott-Raven, 1997, pp 433–50

    Google Scholar 

  28. J.C. Keifer, Baghdoyan HA, Becker L, Lydic R, Halothane decreases pontine acethylcholine release and increases EEG spindles, Neuroreport 5, 577–80 (1995).

    Article  Google Scholar 

  29. M.T. Alkire, Haler R.J, Shah N.K, Anderson C.T, Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia, Anesthesiology 86, 549–57 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. M.T. Alkire, Pomfrett C.J, Haier R.J, Gianzero M.V, Chan C.M, Jacobsen B.P, Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism, Anesthesiology 90, 701–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. L.J. Adler, Gyulai F.E, Diehl D.J, Mintum M.A, Winter P.M, Firestone L.L, Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography, Anesth Analg 84, 120–6 (1997).

    PubMed  CAS  Google Scholar 

  32. CR. Ries, Puil E, Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons, J Neurophysiol 81, 1795–801 (1999).

    PubMed  CAS  Google Scholar 

  33. D.A. Gusnard, Raichle M.E, Raichle M.E, Searching for a baseline: functional imaging and the resting human brain, Nature Reviews Neuroscience 2, 685–94, (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fiset, P. (2003). Functional Brain Imaging and Propofol Mechanisms of Action. In: Vuyk, J., Schraag, S. (eds) Advances in Modelling and Clinical Application of Intravenous Anaesthesia. Advances in Experimental Medicine and Biology, vol 523. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9192-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9192-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4830-6

  • Online ISBN: 978-1-4419-9192-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics