Functional Brain Imaging and Propofol Mechanisms of Action

  • Pierre Fiset
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 523)

Abstract

Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) allow researchers to study brain function in vivo. These techniques are used to refine our understanding of the nature of anaesthetic effects as well as of the influence of anaesthetic drugs on sensory and pain transmission.

Keywords

Attenuation Dopamine Serotonin Retina Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Raichle, W. Martin, Herscovitch P, Mintun M, Markham J, Brain blood flow measured with intravenous H2O15 II. Implementation and validation, JfNucl Med 24, 790–8, (1983)Google Scholar
  2. 2.
    M. Kato, Ueno T, Black P, Regional cerebral blood flow of the main visual pathways during photic stimulation of the retina in intact and split-brain monkeys, Exp Neurol 42, 65–77 (1974)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Villringer, Understanding functional neuroimaging methods based on neurovascular coupling, Adv Exp Med Biol 413, 177–93(1997).PubMedGoogle Scholar
  4. 4.
    G.B. Saha, Maclntyre W.J, Go R.T., Radiopharmaceuticals for brain imaging, Semin Nucl Med 24, 324–49 (1994)PubMedCrossRefGoogle Scholar
  5. 5.
    M.I. Posner, Petersen S.E., Fox P.T., Raichle M.E., Localization of cognitive operations in the human brain, Science 240, 1627–31(1988)PubMedCrossRefGoogle Scholar
  6. 6.
    D. Le Bihan, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V, Fuctional magnetic resonance imaging of the brain, Annals of Internal Medicine 122, 296–303 (1995).PubMedGoogle Scholar
  7. 7.
    S. Ogawa, Tank D.W., Menon R., Ellermann J.M., Kim S-G, Merkle H, Ugurbil K, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc Natl Acad Sci 89, 5951–5 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    M.T. Alkire, Haier R.J., Barker S.J., Shah N.K., Wu J.C., Kao J., Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography, Anesthesiology 82, 393–403 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    M.T. Alkire, Quantitative EEG correlations with brain glucose metabolic rate during anesthesia volunteers, Anesthesiology 89, 323–33 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Fiset P, Paus T., Daloze T., Plourde G., Meuret P., Bonhomme V., Hajj-Ali N., Backman SB., Evans A.C., Brain mechanisms of propofol-induced loss of consciousness in humans: a Positron Emission Tomography study, J Neurosci 19, 5506–13 (1999).PubMedGoogle Scholar
  11. 11.
    R.A. Veselis, Reinsel R.A., Beattie B.J., Mawlawi O.R., Feshchenko V.A., DiResta G.R., Larson S.M., Blasberg R.G., Midazolam changes cerebral blood flow in discrete brain regions, Anesthesiology 87, 1106–17 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    M.T. Alkire, Haier R.J., Fallon J.H., Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurrophysiologic basis of anesthetic-induced unconsciousness, Consciousness and Cognition 9, 370–86 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    R.C. Coghill, Talbot J.D., Evans A.C., Meyer E., Gjedde A., Bushnell M.C., Duncan G.H., Distributed processing of pain and vibration by the human brain, J Neurosci 14, 4095–108 (1994).PubMedGoogle Scholar
  14. 14.
    J.D. Talbot, Marret S, Evans A.C., Meyer E, Bushnell M.C., Duncan G.H., Multiple representations of pain in human cerebral cortex, Science 251, 1355–7 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    V. Bonhomme, Fiset P, Meuret P, Backman S, Plourde G, Paus T, Bushnell C, Evans A, Effect of propofol-induced general anesthesia on changes in regional cerebral blood flow elicited by vibrotactile stimulation: a positron emission tomography study, J Neurophysiol 85, 1299–308 (2001).PubMedGoogle Scholar
  16. 16.
    R.K. Hofbauer, Fiset P, Plourde G, Backman S.B., Bushnell M.C., Cortical correlates of the conscious experience of pain, J Neurosci, Submitted (2002).Google Scholar
  17. 17.
    F. Gyulai, L. Firestone, J. Price, P. Winter, In vivo imaging of volatile anesthetic action at the 5HT2A- receptor (5HT 2 a-R) in humans: a quantitative positron emission tomography (PET) study, Society for Neuroscience 23, 59.18 (1997).Google Scholar
  18. 18.
    F.E. Gyulai, Mintum M.A., Firestone L.L., Dose-dependent enhancement of in vivo GABAA-benzodiazepine receptor binding by isoflurane, Anesthesiology 95, 585–93 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    S.L. Dewey, Brodie J.D., Fowler J.S., MacGregor R.R., Schyler D.J., King P.T., Alexoff D.L., Volkow N.D., Shiue C-L, Wolf A.P., Bendriem B, Positron Emission Tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain, Synapse 6, 321–7 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    U. Ebert, Oertel R, Kirch W: Physostigmine reversal of midazolam-induced electroencephalographic changes in healthy subjects, Clin Pharmacol Ther 67, 538–48 (2001).CrossRefGoogle Scholar
  21. 21.
    A.A. Artru, Hui GS, Physostigmine reversal of general anesthesia for intraoperative neurological testing: Associated EEG changes, Anesth Analg 65, 1059–62, (1986).PubMedGoogle Scholar
  22. 22.
    P. Hartvig, Lindstrbm B, Petterson E, Wiklund L, Reversal of postoperative somnolence using a two-rate infusion of physostigmine, Acta Anaesthesiol Scand 33, 681–5 (1986).CrossRefGoogle Scholar
  23. 23.
    P. Meuret, Backman S.B., Bonhomme V., Plourde G, Fiset P, Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers, Anesthesiology 93, 708–17 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Toro-Matos, Rendon-Platas A.M, Avila-Valdez E., Villarreal-Guzman R.A., Physostigmine antagonizes ketamine, Anesth Analg 59, 764–7 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Talbot, G. Plourde, S.B. Backman, D. Chartrand, P. Fiset, Effect of physostigmine on the loss of consciousness and analgesia produced by remifentanil, Anesthesiology 93, A389 (2000).CrossRefGoogle Scholar
  26. 26.
    R. Lydic R, Biebuyck JF, Sleep neurobiology: relevance for mechanistic studies of anaesthesia, Br J Anaesth 72, 506–8 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Lydic, Baghdoyan H.A., Cholinergic contribution to the control of consciousness, Anesthesia: Biologic Foundations. Edited by Yaksh TLeal. Philadelphia, Lippincott-Raven, 1997, pp 433–50Google Scholar
  28. 28.
    J.C. Keifer, Baghdoyan HA, Becker L, Lydic R, Halothane decreases pontine acethylcholine release and increases EEG spindles, Neuroreport 5, 577–80 (1995).CrossRefGoogle Scholar
  29. 29.
    M.T. Alkire, Haler R.J, Shah N.K, Anderson C.T, Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia, Anesthesiology 86, 549–57 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    M.T. Alkire, Pomfrett C.J, Haier R.J, Gianzero M.V, Chan C.M, Jacobsen B.P, Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism, Anesthesiology 90, 701–9 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    L.J. Adler, Gyulai F.E, Diehl D.J, Mintum M.A, Winter P.M, Firestone L.L, Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography, Anesth Analg 84, 120–6 (1997).PubMedGoogle Scholar
  32. 32.
    CR. Ries, Puil E, Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons, J Neurophysiol 81, 1795–801 (1999).PubMedGoogle Scholar
  33. 33.
    D.A. Gusnard, Raichle M.E, Raichle M.E, Searching for a baseline: functional imaging and the resting human brain, Nature Reviews Neuroscience 2, 685–94, (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Pierre Fiset
    • 1
  1. 1.Department of AnaesthesiaMcGill UniversityMontréalCanada

Personalised recommendations