Basic Pharmacokinetic Principles for Intravenous Anaesthesia

  • Frank H. M. Engbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 523)


The ultimate aim of pharmacological research is to describe the dose-effect relationship of drugs. This relationship is difficult to describe because it is time dependent. A phase difference exists between the moment of administration of the drug and the observed effect. Furthermore, continuous measurement of the effect of a drug is not always possible. If blood concentrations of the drug can be measured then the dose-effect relationship is divided into a dose-concentration relationship (pharmacokinetics) and a concentration-effect relationship (pharmacodynamics).


Infusion Rate Blood Concentration Pharmacokinetic Model Central Compartment Intravenous Anaesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Kuipers, F. Boer, E. Olofsen, J. G. Bovill and A. G. Burm, Recirculatory Pharmacokinetics and Pharmacodynamics of Rocuronium in Patients: The Influence of Cardiac Output. Anesthesiology; 94: 47–55 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    W. L. Chiou, The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part I) Clin Pharmacokinet 17: 175–99 (1989)PubMedCrossRefGoogle Scholar
  3. 3.
    D. R. Stanski, F. G. Mihm, M.H. Rosenthal and S.M. Kalman, Pharmacokinetics of high-dose thiopental used in cerebral resuscitation Anesthesiology 53: 169–71 (1980)PubMedCrossRefGoogle Scholar
  4. 4.
    R. N. Boyes, D. B. Scott, PJ. Jebson, M. J. Godman and D. G. Juhan, Pharmacokinetics of lidocaine in man. Clin Pharmacol Then 12: 105–15; (1971)Google Scholar
  5. 5.
    P. O. Mitenko and R. I. Olgilvie. Rapidly achieved plasma concentrations plateaus with observations on theophylinne kinetics. Clin Pharmacol Ther; 13: 329–35 (1971)Google Scholar
  6. 6.
    T. Kazama, K. Ikeda, K. Morita and Y. Sanjo, Awakening Propofol Concentration with and without Blood-effect Site Equilibration after Short-term and Long-term Administration of Propofol and Fentanyl Anesthesia, Anesthesiology 88: 928–34 (1998)PubMedCrossRefGoogle Scholar
  7. 7.
    J. Vuyk, T. Lim, F. H. M. Engbers, A. G. Burm, A. A. Vletter and J. G. Bovill, The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women, Anesthesiology 83(1): 8–22 (1995)PubMedCrossRefGoogle Scholar
  8. 8.
    S. L. Shafer and K. M. Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of effect with a computer controlled infusion pump, J Pharmacokineti Biopharm 20: 147–167 (1992)CrossRefGoogle Scholar
  9. 9.
    C.F. Minto, Th. W. Schmder, T. D. Egan, E. Youngs, H. J. Lemmens, P. L. Gambus, V. Billard, J. F. Hoke, K. H. Moore, D. J. Hermann, K. T. Muir, J. W. Mandema and S. L. Shafer. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil: I. Model development, Anesthesiology 86: 10–23 (1997)PubMedCrossRefGoogle Scholar
  10. 10.
    M. White, M. J. Schenkels and F. H. M. Engbers, Effect-site modelling of propofol using auditory evoked potentials, Br J Anaesth 82(3): 333–910 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    M. A. Hughes, P. S. A. Glass and J. R. Jacobs, Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology; 76. 334–341 (1992)PubMedCrossRefGoogle Scholar
  12. 12.
    J. F. Coetzee, J. B. Glen, C. A. Wium and L. Boshoff, Pharmacokinetic Model Selection for Target Controlled Infusions of Propofol. Anesthesiology 82: 1328–1345 (1995)PubMedCrossRefGoogle Scholar
  13. 13.
    K. Zomorodi, A. Donner, J. Somma, J. Barr, R. Sladen, J. Ramsay, E. Geller, S.L. Sharer, Population pharmacokinetics of midazolam administered by target controlled infusion for sedation following coronary artery bypass grafting. Anesthesiology 89 (6): 1418–29 (1998)PubMedCrossRefGoogle Scholar
  14. 14.
    D.R. Stanski and P.O. Maitre, Population pharmacokinetics and pharmacodynamics of thiopental:the effect of age revisited. Anesthesiology 72: 412–422 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    P. O. Maitre, S. Vozeh, J. Heykants, D. A. Thomson and D. R. Stanski, Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients, Anesthesiology 66: 3–12 (1987)PubMedCrossRefGoogle Scholar
  16. 16.
    S.L. Shafer, J.R. Varvel, Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 74 (1): 53–63 (1991)PubMedCrossRefGoogle Scholar
  17. 17.
    J.G. Bovill, P.S. Sebel, CL. Blackburn, CL. Oei-Lim, J.J. Heykants, The pharmacokinetics of sufentanil in surgical patients, Anesthesiology 61 (5): 502–6 (1984)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Frank H. M. Engbers
    • 1
  1. 1.Leiden University Medical CenterDepartment of AnaesthesiologyLeidenNetherlands

Personalised recommendations