Skip to main content

Model Systems for Studying Germ Cell Mutagens: From Flies to Mammals

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 518))

Abstract

The animal models used to analyze heritable effects induced in male germ cells by genotoxic agents are the fruit fly Drosophila melanogaster, the mouse and, to a lesser extent, the zebrafish Brachydanio rerio. More than five decades of research on germline mutagenesis have led to the identification of the major variables in the complex relationship between mutagenic insult and germ-cell stage response. One key observation was that the magnitude of genetic damage induced in distinct cell stages by a mutagen can vary by several orders of magnitude (Vogel et al, 1998). A systematical comparison of hereditary damage in Drosophila males and in male mice revealed, nevertheless, common features of germ-cell responses across both species (Vogel and Natarajan, 1995). There is now abundant evidence that the presence and efficiency of DNA repair has a chief function for what is phenomenologically described as germ-cell specificity in the response to mutagen exposure. Other cellular conditions with a major function are the capacity of the cell for enzymatic conversion of stable chemicals into DNA-interactive metabolites, and germinal selection against large structural chromosome aberrations during and prior to meiosis. The interaction of these three complex biological processes largely determines the mutational spectrum finally observed in each individual germ-cell stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abrahamson, S. and Lewis, E.B., 1971, The detection of mutations in Drosophila melanogaster, in: Chemical Mutagens, Principles and Methods for their Detection, A. Hollaender, A. ed., Plenum Press, New York, pp. 461–487.

    Google Scholar 

  • Adler, I.D., 1996, Comparison of the duration of spermatogenesis between male rodents and humans. Mutat Res. 352:169–172.

    Article  PubMed  Google Scholar 

  • Araj, H., and Smith, P.D., 1996, Positional cloning of the Drosophila melanogaster mei-9 gene, the putative homolog of the Saccharomyces cerevisiae RADI gene. Mutat Res. 364:209–215.

    Article  PubMed  CAS  Google Scholar 

  • Barbin, A., and Bartsch, H., 1989, Nucleophilic selectivity as a determinant of carcinogenic potency (TD50) in rodents: a comparison of mono-and bi-functional alkylating agents and vinyl chloride metabolites. Mutation Res. 215:95–106.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, A.J., 1984, The dominant lethal assay in the mouse, in: Handbook of Mutagenicity Test Procedures, B.J. Kilbey, M. Legator, W. Nichols and C. Ramel (eds.), Elsevier Amsterdam, 471.

    Google Scholar 

  • Beranek, D.T., 1990, Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 231:11–30.

    Article  PubMed  CAS  Google Scholar 

  • Brent, T.P., M.E. Dolan, M.E., Fraenkel-Conrat, H., Hall, J., Karran, P., Laval, F., Margison, G.P., Montesano, R., Pegg, A.E., Potter, P.M., Singer, B., Swenberg, J.A., and Yarosh, D.B., 1988, Repair of O-alkylpyrimidines in mammalian cells: a present consensus. Proc Nati Acad Sci USA. 85:1759–1762.

    Article  CAS  Google Scholar 

  • Calléja, F.M.G.R. Nivard, M.J.M. and Eeken, J.C.J., 2001, Induced mutagenic effects in the nucleotide excision repair deficient Drosophila mutant mus201 Dl, expressing a truncated XPG protein. Mutat Res. 461:279–288.

    Article  PubMed  Google Scholar 

  • Culvenor, C.C.J. and Jago, 1978, Carcinogenic plant products and DNA, in: Chemical Carcinogens and DNA, Vol. I, P.L. Grover, ed., CRC Press, Boca Raton, Florida, pp. 161–186.

    Google Scholar 

  • Ehling, U.H., and Favor, J., 1984, Recessive and dominant mutations in mice, in: Mutation, Cancer and Malformation, Chu, E.H.Y. and Generoso, W.M., ed., Plenum Publishing Corporation, New York, pp. 389–428.

    Chapter  Google Scholar 

  • Ehling, U.H., and Neuhäuser-Klaus, A., 1988, Induction of specific-locus and dominant-lethal mutations in male mice by diethyl sulfate (DES). Mutat Res. 199:191–198.

    PubMed  CAS  Google Scholar 

  • Ehling, U.H., and Neuhäuser-Klaus A., 1989a, Induction of specific-locus and dominant lethal mutations in male mice by chlormethine. Mutat Res. 227:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U.H., and Neuhäuser-Klaus< A., 1989b, Induction of specific-locus mutations in male mice by ethyl methanesulfonate (EMS). Mutat Res. 227:91–95.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U.H., and Neuhäuser-Klaus, A., 1990, Induction of specific-locus and dominant lethal mutations in male mice in the low dose range with methyl methanesulfonate (MMS). Mutat Res. 230:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U.H. and Neuhäuser-Klaus, A., 1991, Induction of specific-locus mutations and dominant lethal mutations in male mice by 1-methyl-1-nitrosourea (MNU). Mutat Res, 250:447–456.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U.H., Adler, I.D., Favor, J., and Neuhäuser-Klaus, A., 1997, Induction of specific-locus and dominant lethal mutations in male mice by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and l-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea(CCNU).Mutat Res. 379:219–231.

    Article  PubMed  CAS  Google Scholar 

  • Favor, J., 1998, The mutagenic activity of ethylnitrosourea at low doses in spermatogonia of the mouse as assessed by the specific-locus test. Mutat Res. 405:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Favor, J., 1999, Mechanisms of mutation in germ cells of the mouse as assessed by the specific locus test. Mutat Res. 428:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R.C. and Lutz, W.K., 1999, Background DNA damage from endogenous and exogenous carcinogens: a basis for spontaneous cancer incidence? Mutat Res. 424:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Haas, J.F., Kittelmann, B, Mehnert, W.H., Staneczek, W., Mohner, M, Kaldor, J.M., and Day, N.E., 1987, Risk of leukaemia in ovarian tumour and breast cancer patients following treatment by cyclophosphamide. Br J Cancer. 55:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Heller, C.G. and Clermont, Y., 1963, Spermatogenesis in man: an estimate of its duration. Science. 140:184–186.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M.A., Stack, H.F. and Waters, M.D., 1996, Genetic activity profiles of anticancer drugs. Mutat Res. 355:171–208.

    Article  PubMed  Google Scholar 

  • Lee.W.R., Abrahamson, S.,Valencia, R., von Halle,. E.S., Würgler, F.E. and Zimmering, S., 1983, The sexlinked recessive lethal test for mutagenesis in Drosophila melanogaster.Mutat Res. 123:183–279.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W.R., and Kelley, M.R., 1986, Correction for differences in germ cell stage sensitivity in risk assessment, in: Risk Assessment in Relation to Environmental Mutagens and Carcinogens, Alan R. Liss, Inc., New York, pp. 99–102.

    Google Scholar 

  • Lindsley, D.L., and Tokuyasu, K.T., 1980, Spermatogenesis, in: The Genetics and Biology of Drosophila, M. Ashburner and T.R.F. Wright, ed., Academic Press, London and New York, Vol. 2d, pp 225–294..

    Google Scholar 

  • Léonhard, A. and Adler, I.D., 1984, Test for heritable translocations in male mammals, in: Handbook of Mutagenicity Test Procedures, B.J. Kilbey, M. Legator, W. Nichols and C. Ramel (eds.), Elsevier Amsterdam, 471.

    Google Scholar 

  • Nakamura, J., Walker, V.E., Upton, P.B., Chiang, S.-Y., Kow, Y.W., and Swenberg, J.A., 1998, Highly sensitive apurinic / apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58:222–225.

    PubMed  CAS  Google Scholar 

  • Nivard, M.J.M., Pastink, A., Vogel, E.W., 1992, Molecular analysis of mutations in the vermilion gene of Drosophila melanogaster by methyl methanesulfonate. Genetics. 131:673–682.

    CAS  Google Scholar 

  • Nivard, M.J.M., Pastink, A., Vogel, E.W., 1993, Impact of DNA nucleotide excision repair on methyl methanesulfonate-induced mutations in Drosophila melanogaster. Carcinogenesis. 14:1585–1590.

    CAS  Google Scholar 

  • Oakberg, E.F., 1956a, A description of spermatogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat. 99:391–413.

    Article  PubMed  CAS  Google Scholar 

  • Oakberg, E.F., 1956b, Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat. 99:507–516.

    Article  PubMed  CAS  Google Scholar 

  • Pastink, A, Vreeken, C, Nivard, M.J.M., Searles, L., and Vogel, E.W., 1989, Sequence analysis of N-ethyl-N-nitrosourea induced vermilion mutations on Drosophila melanogaster. Genetics. 123:123–129.

    PubMed  CAS  Google Scholar 

  • Pastink, A., Heemskerk, E., Nivard, M.J.M., van Vliet, C.J., and Vogel, E.W., 1991, Mutational specificity of ethyl-methanesulfonate in excision-repair proficient and-deficient strains of Drosophila melanogaster. Mol Gen Genetics. 229:213–218.

    Article  CAS  Google Scholar 

  • Penn, I., 1986, Malignancies induced by drug therapy: a review. IARC Sci. Publ. No. 78, International Agency for Research on Cancer, Lyon, pp. 13–27.

    Google Scholar 

  • Russell, L.B., Selby, P.B., von Halle, E., Sheridan, W., and Valcovic, L., 1981, The mouse specific-locus test with agents other than radiations, Interpretations of data and recommendations for future. Mutat Res. 86:329–354.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B., Russell, W.L., Rinchik, E.M., and Hunsicker, P.R., 1990, Factors affecting the nature of induced mutations, in: Biology of Mammalian Germ Cell Mutagenesis, Banbury Report 34, J.W. Allen, B.A., Bridges, F.M., Lyon, M.J., Moses, and Russell, L.B.,ed., Cold Spring Harbor Laboratory Press, pp. 271–289.

    Google Scholar 

  • Russell, L.B., and Rinchik, E.M., 1993, Structural differences between specific-locus mutations induced by different regimes in mouse spermatogonial stem cells. Mutat Res. 288:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., Hunsicker, P.R., Raymer, G.D., Steele, M.H., Stelzner K.F., and Thomson, H.M., 1982, Doseresponse curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci USA. 79:3589–3591.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1984, Dose response, repair, and no-effect dose levels in mouse germ-cell mutagenesis, in: Problems of Threshold in Chemical Mutagenesis, Y. Tazima, S., Kondo, and S. Kuroda, eds., The Environmental Mutagen Society of Japan, 153.

    Google Scholar 

  • Sega, G.A., 1974, Unscheduled DNA synthesis in the germ cells of male mice exposed in vivo to the chemical mutagen ethyl methanesulfonate. Proc Natl Acad Sci USA. 71:4955–4959.

    Article  PubMed  CAS  Google Scholar 

  • Sega, G.A., Alcota, V.R.P., Tancongco, C.P., and Brimer, P.A., 1989, Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat Res. 216:221–230.

    Article  PubMed  CAS  Google Scholar 

  • Sega, G.A., 1990, Molecular targets, DNA breakage, and DNA repair: their roles in mutation induction in mammalian germ cells, in: Biology of Mammalian Germ Cell Mutagenesis, Banbury Report 34, J.W. Allen, B.A., Bridges, F.M., Lyon, M.J. Moses, and J. and Russell, L.B., eds., Cold Spring Harbor Laboratory Press, pp. 79–91.

    Google Scholar 

  • Segerbäck, D., 1994, DNA alkylation by ethylene oxide and some monosubstituted epoxides, in: DNA Adducts Identification and Biological Significance, K. Hemminki, A. Dipple, D.E.G. Shuker, F.F. Kadlubar, D. Segerbäck, and H. Bartsch, ed., IARC Scientific Publ. No. 125, IARC Lyon, pp. 37–47.

    Google Scholar 

  • Segerbäck, D,, Plná, K., Faller, T., Kreuzer, P.E., Håkansson, K., Filser, J.G. and Nilsson, R., 1998, Tissue distribution of DNA adducts in male Fischer rats exposed to 500 ppm of propylene oxide: quantitative analysis of 7-(2-hydroxypropyl)guanine by 32P-postlabelling. Chem Biol Interact. 115:229–246.

    Article  PubMed  Google Scholar 

  • Sekelsky, J.J., McKim, K.S., Chin, G.M. and Hawley, R.S., 1995, The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein radl. Genetics. 141:619–627.

    PubMed  CAS  Google Scholar 

  • Sekelsky, J.J., Hollis, K.J., Eimerl, A.I., Burtis, M.R. and Jawley, R.S., 2000, Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res. 459:219–228.

    CAS  Google Scholar 

  • Sharpe, R.M., 1994, Regulation of spermatogenesis, in: The Physiology of Reproduction, E. Knobil and J.D. Neil,eds, Vol. 2, Raven Press, pp. 1363–1434.

    Google Scholar 

  • Shelby, M.D., 1996, Selecting chemicals and assays for assessing mammalian germ cell mutagenicity. Mutat Res. 352:159–167.

    Article  PubMed  Google Scholar 

  • Singer,B., and Grunberger, D., 1983, Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York.

    Book  Google Scholar 

  • Smith, P.D., Dusenbery, R.L., Cooper, S.F., and Baumen C.F., 1982, Examining the mechanism of mutagenesis in repair-deficient strains of Drosophila melanogaster, in: Environmental Mutagens and Carcinogens, T. Sugimura, S. Kondo, and H. Takebe, eds., University of Tokyo Press, Tokyo, pp. 147–155.

    Google Scholar 

  • Smith, P.D., Baumen, CF., and Dusenbery, R.L., 1983, Mutagen sensitivity of Drosophila melanogaster, VI. Evidence from the excision-defective mei-9 ATI mutant for the timing of DNA repair activity during spermatogenesis. Mutat Res. 108:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Sobels, F.H., 1974, The advantage of Drosophila for mutation studies. Mutat Res. 26:277–284.

    Article  PubMed  CAS  Google Scholar 

  • Solnica-Krekel, L., Schier, A.F. and W. Driever, W., 1994, Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics. 136:1401–1420.

    Google Scholar 

  • Sotomayor, R.E., Sega, G.A., and Cumming, R.B., 1978, Unscheduled DNA synthesis in spermatogenic cells of mice treated in vivo with the indirect alkylating agent cyclophosphamide and mitomen. Mutat Res. 50:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor, R.E., Sega, G.A., and Cumming, R.B., 1979, An autoradiographic study of unscheduled DNA synthesis in the germ cells of mice treated with X-rays and methyl methanesulfonate. Mutat Res. 62:293–309.

    Article  PubMed  CAS  Google Scholar 

  • Tosal, L., Comendador, M.A. and Sierra, L.M., 1998 N-Ethyl-N-nitrosourea predominantly induces mutations at AT base pairs in pre-meiotic germ cells of Drosophila males. Mutagenesis. 13:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., 1975, Some aspects of the detection of potential mutagenic agents in Drosophila. Mutat Res. 29:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W. and Leigh, B., 1975, Concentration-effect studies with MMS, TEB, 2,4,6-triCl-PDMT, and DEN on the induction of dominant lethals, recessive lethals, chromosome loss and translocations in Drosophila sperm. Mutat Res. 29:383–396.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., Blijleven, W.G.H., Kortsclius, M.J.H., and Zijlstra J.A., 1982, A search for some common characteristics of chemical mutagens in Drosophila. Mutat Res. 92:69–87.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W. and Zijlstra, J.A., 1987, Somatic cell mutagenesis in Drosophila melanogaster in comparison with genetic damage in early germ-cell stages. Mutat Res. 180:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., 1989, Nucleophilic selectivity of carcinogens as a determinant of enhanced mutational response in excision repair-defective strains in Drosophila: effects of 30 carcinogens. Carcinogenesis. 10:2093–2106.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., Barbin, A., Nivard, M.J.M. and Bartsch, H., 1990, Nucleophilic selectivity of alkylating agents and their hypermutability in Drosophila as predictors of carcinogenic potency in rodents. Carcinogenesis. 11:2211–2217.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W. and Nivard, M.J.M., 1994, International Commission for Protection Against Environmental Mutagens and Carcinogens. The subtlety of alkylating agents in reactions with biological macromolecules. Mutat Res. 305:13–32.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W. and Natarajan, A.T., 1995, DNA damage and repair in somatic and germ cells in vivo. Mutat Res. 330:183–208.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., Nivard, M.J.M., Ballering, L.A.B., Bartsch, H., Barbin, A., Nair, J., Comendador, M.A., Sierra, L.M., Aguirrezabalaga, I., Tosal, L., Ehrenberg, L., Fuchs, R.P.P., Janel-Bintz, R., Maenhaut-Michel, G., Montesano, R., Hall, J., Kang, H., Miele, M., Thomale, J., Bender, K., Engelbergs, J., and Rajewsky, M.F., 1996, DNA damage and repair in mutagenesis and carcinogenesis: implications of structure-activity relationships for cross-species extrapolation. Mutat Res. 353:177–218.

    Article  PubMed  Google Scholar 

  • Vogel, E.W. and Nivard, M.J.M., 1997, The response of germ cells to ethylene oxide, propylene oxide, propylene imine and methyl methanesulfonate is a matter of cell-stage related DNA repair. Environ Mol Mutagen. 29:124–135.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W. and Nivard, M.J.M., 1998, Genotoxic effects of inhaled ethylene oxide, propylenen oxide and butylene oxide on germ cells: Sensitivity of genetic endpoints in relation to dose and repair status. Mutat Res. 405:259–271.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., Barbin, A., Nivard, M.J.M., Stack, H.F., Waters, M.D. and Lohman, P.H.M., 1998, Heritable and cancer risks of exposure to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents. Mutat Res. 400:509–540.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, E.W., Graf, U., Frei, H.-J. and Nivard, M.J.M., 1999, The results of assays in Drosophila as indicators of exposure to carcinogens, in: The Use of Short-and Medium-term Tests for Carcinogens and Data on Genetic Effects in Carcinogenic Hazard Evaluation, D.B. McGregor, J.M. Rice and S. Venitt, eds., IARC Scientific Publ. No. 146, International Agency for Research on Cancer, Lyon, pp. 427–469.

    Google Scholar 

  • Vogel, E.W. and Nivard, M.J.M., 2000, Parallel monitoring of mitotic recombination, clastogenicity and teratogenic effects in eye tissue of Drosophila. Mutat Res. 455:141–153.

    CAS  Google Scholar 

  • Vogel, E.W. and Nivard, M.J.M., 2001, Phenotypes of Drosophila homologs of human XPF and XPG to chemically-induced DNA modifications. Mutat Res. 476:149–165.

    Article  PubMed  CAS  Google Scholar 

  • Wijen, J.P.H., van Lange, R.E.E., Nivard, M.J.M. and Vogel, E.W., Differences in the proportion of multilocus deletions induced by chlorambucil in post-and premeiotic germ cells of male Drosophila, paper submitted.

    Google Scholar 

  • Würgler, F.E., Sobéis, F.H. and Vogel E.W., 1984, Drosophila as assay system for detecting genetic changes, in: Handbook of Mutagenicity Testing Procedures, B. Kilbey, M. Legator, W. Nichols and C. Ramel,eds., Elsevier/North Holland Biomedical Press, Amsterdam, pp. 555–602

    Google Scholar 

  • Wyrobek, A., Gordon, L., and Watchmaker, G., 1981, Evaluation of 17 chemical agents including 6 carcinogen/noncarcinogen pairs on sperm shape abnormalities in mice, in: Evaluation of Short-Term Tests for Carcinogens, F.J. de Serres and J. Ashby, ed., Elsevier/North Holland, 712.

    Google Scholar 

  • Zhao, C., Tyndyk, M., Eide, I. and Hemminki, K., 1999, Endogenous and background DNA adduets by methylating and 2-hydroxylating agents. Mutat Res. 424:117–125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vogel, E.W., Nivard, M.J.M. (2003). Model Systems for Studying Germ Cell Mutagens: From Flies to Mammals. In: Robaire, B., Hales, B.F. (eds) Advances in Male Mediated Developmental Toxicity. Advances in Experimental Medicine and Biology, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9190-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9190-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4829-0

  • Online ISBN: 978-1-4419-9190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics