Skip to main content

Germline Mutation Induction at Mouse and Human Tandem Repeat DNA Loci

  • Chapter
Advances in Male Mediated Developmental Toxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 518))

Abstract

The ability to predict the genetic consequences for humans of exposure to ionising radiation has certainly been one of the most important goals of human genetics in the past fifty years. However, despite numerous experimental studies, little is known about the effects of radiation exposure on germline mutation in humans. For example, data collected in Hiroshima and Nagasaki during the past 40 years on children of atomic bomb survivors using standard monitoring systems have not provided evidence of any statistically signifycant differences in mutation rate between exposed and control families (Neel at al., 1990). Similarly, a survey of survivors treated with radiotherapy showed that the occurrence of genetic diseases in their offspring was similar to that in control families (Byrne et al, 1998). For this reason, germline mutation induction in mice still remains the main source of experimental data used to evaluate the genetic risk of human exposure to ionising radiation (UNCEAR, 1993; Sankaranarayanan and Chakraborty, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Armour, J.A.L., Brinkworth, M.H., and Kamischke, A., 1999, Direct analysis by small-pool PCR of MS205 minisatellite mutation rates in sperm after mutagenic therapies. Mutat Res, 445:73–80.

    Google Scholar 

  • Barber, R., Plumb, M.A., Smith, A.G., Cesar, C.E., Boulton, E., Jeffreys, A.J., and Dubrova, Y.E., 2000, No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin. Mutat Res. 457:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, A.L.. Phillips, R.J.L., and Searle, A.G.. 1966, A comparison of the mutagenic effectiveness of chronic neutron-and 7-irradiation of mouse spermatogonia. Mutat Res. 3:218–229.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, A.L., Phillips, R.J.L., and Searle, A.G., 1967, The reversed dose-rate effect with fast neutron irradiation of mouse spermatogonia. Mutat Res. 4:229–231.

    Article  Google Scholar 

  • Blake, J.A., Eppig, J.T., Richardson, J.E., Davisson, M.T., and The Mouse Genome Database Group, 2000, The Mouse Genome Database (MGD): expanding genetic and genomic resources for the laboratory mouse. Nucl Acids Res. 28:108–111.

    Article  PubMed  CAS  Google Scholar 

  • Bois, P., Stead, J.H.D., Bakshi, S., Williamson, J., Neumann, R., Moghadaszadeh, B., and Jeffreys, A.J., 1998a, Isolation and characterization of mouse minisatellites. Genomics. 50:317–330.

    Article  PubMed  CAS  Google Scholar 

  • Bois, P., Williamson, J., Brown, J., Dubrova, Y.E., and Jeffreys, A.J., 1998b, A novel unstable mouse VNTR family expanded from SINE Bl element. Genomics. 49:122–128.

    Article  PubMed  CAS  Google Scholar 

  • Buard, J., Bourdet, A., Yardley, J., Dubrova, Y.E., and Jeffreys, A.J., 1998, Influence of array size and homogeneity on minisatcllitc mutation. EMBO J. 17:3495–3502.

    Article  PubMed  CAS  Google Scholar 

  • Buard, J., Collick A.J., Brown, J., and Jeffreys, A.J., 2000, Somatic versus germline mutation process at minisatellite CEB1 D2S90 in humans and transgenic mice. Genomics. 65:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, J., Rasmussen, S.A., Steinhom, S.C., Connelly, R.R., Myers, M.H., Lynch, C.F., Flannery, J., Austin, D.F., Holmes, F.F.. Holmes, G.E., Strong, L.C., and Mulvihill, J.J., 1998, Genetic diseases in offspring of long-term survivors of childhood and adolescent cancer. Am J Hum Genet. 62:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Constancia, M., Pickard, B., Kelsey, G., and Reik. W., 1998, Imprinting mechanisms. Genome Res. 8:881–900.

    PubMed  CAS  Google Scholar 

  • De Rooij, D.G., 1998, Stem cells in the testis. Int J Exp Path. 79:67–80.

    Article  Google Scholar 

  • Drosdovitch, V.V., Minenko, M.F., Ulanovski, A.V., and Shemyakina, E.V., 1989, Prognosis of Doses of Exposure for Population of BSSR from the Caesium Radionuclides, Ministry of Health of Belarus, Minsk.

    Google Scholar 

  • Dubrova, Y.E., Jeffreys, A.J., and Malashenko, A.M., 1993, Mouse minisatellite mutations induced by ionizing radiation. Nature Genet. 5:92–94.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., Ostapenko, V.A., Neumann, R., Neil, D.L., and Jeffreys, A.J., 1996, Human minisatellite mutation rate after the Chernobyl accident. Nature. 380:683–686.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., Ostapenko, V.A., Vergnaud, G., Giraudeau, F., Buard, J., and Jeffreys, A.J., 1997, Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res. 381:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Plumb, M., Brown, J., Fennelly, J., Bois, P., Goodhead, D., and Jeffreys, A.J., 1998, Stage specificity, dose response, and doubling dose for mouse minisatcllite germ-line mutation induced by acute radiation. Proc Natl Acad Sci USA. 95:6251–6255.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Plumb, M., Brown, J., and Jeffreys, A.J., 1998, Radiation-induced germline instability at minisatellite loci, Int J Radiat Biol. 74:689–696.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Plumb, M., Brown, J., Boulton, E., Goodhead, D., and Jeffreys, A.J., 2000a, Induction of minisatellite mutations in the mouse germline by low-dose chronic exposure to γ-radiation and fission neutrons. Mutat Res. 453:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Dubrova, Y.E., Plumb, M., Gutierrez, B., Boulton, E., and Jeffreys, A.J., 2000b, Transgenerational mutation by radiation. Nature. 405:37.

    Article  PubMed  CAS  Google Scholar 

  • Fan, Y.J., Wang, Z., Sadamoto, S., Ninomiya, Y., Kotomura, N., Kamiya, K., Dohi, K.., Kominami, R., and Niwa, O., 1995, Dose-response of radiation induction of a germline mutation at a hypcrvariable mouse minisatellite locus. Int J Radiat Biol. 68:177–183.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg-Schwager, M., 1990, Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cell. Radiat Environ Biophys. 29:273–292.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, M., Collick, A., Kelly, R., and Jeffreys, A.J., 1993, A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplatation development. Genomics. 17:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Hedenskog, M., Sjogren, M., Cederberg, H., and Rannug, U., 1997, Induction of germline-length mutations at the minisatellites PC-1 and PC-2 in male mice exposed to polychlorinated biphenyls and diesel exhaust emissions. Environ Mol Mutagen. 30:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.G., Umar, A., Polyak, K., Graff, J.R., Ahuja, N., Issa, J.-P.J., Markowitz, S., Willson, J.K.V., Hamilton, S.R., Kinzler, K.W., Kane, M.F., Kolodner, R.D., Vogelstein, B., Kunkel, T.A., and Baylin, S.B., 1998, Incidence and functional consequences hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 95:6870–6875.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R., 1987, The inheritance of epigenetic defects. Science. 238:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Royle, N.J., Wilson, V., and Wong, Z., 1988, Spontaneous mutation rate to new length alleles at tandem-repeat hypervariable loci in human DNA. Nature. 332:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Turner, M., and Debenham, P., 1990, The efficiency of multi-locus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am J Hum Genet. 48:824–840.

    Google Scholar 

  • Jeffreys, A.J., MacLeod, A., Tamaki, K., Neil, D.L., and Monckton, D.G., 1991, Minisatellite repeat coding as a digital approach to DNA typing. Nature. 354:204–209.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Tamaki, K., MacLeod, A., Monckton, D.G., Neil, D.L., and Armour, J.A.L., 1994, Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6:136–145.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., and Neumann, R., 1997, Somatic mutation process at a human minisatellite. Hum Mol Genet. 6:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Kaplanski, C., Chisari, F.V., and Wild, C.P., 1997, Minisatellite rearrangements are increased in liver tumours induced by transplacental alfatoxin B1 treatment of hepatitis B virus transgenic mice, but not in spontaneously arising tumours. Carcinogenesis. 18:633–639.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R., Bulfield, G., Collick, A., Gibbs, M., and Jeffreys, A.J., 1989, Characterization of a highly unstable mouse minisatellite locus: Evidence for somatic mutation during early development. Genomics. 5:844–856.

    Article  PubMed  CAS  Google Scholar 

  • Kodaira, M., Satoh., C, Hiyama, K., and Toyama, K., 1995, Lack of effects of atomic-bomb radiation on genetic instability of tandem-repetitive elements in human germ-cells. Amer J Hum Genet. 57:1275–1283.

    PubMed  CAS  Google Scholar 

  • Kovalchuk, O., Dubrova, Y.E., Arkhipov, A., Hohn, B., and Kovalchuk, I., 2000, Wheat mutation rate after Chernobyl. Nature. 407:583–584.

    Article  PubMed  CAS  Google Scholar 

  • Ledwith, B.J., Joslin, D.J., Troilo, P., Leander, K.R., Clair, J.H., Soper, K.A., Manam, S., Prahalada, S., van Zwieten, J., and Nichols, W.W., 1995, Induction of minisatellite DNA rearrangements by genotoxic carcinogens in mouse liver tumors. Carcinogenesis. 16:1167–1172.

    Article  PubMed  CAS  Google Scholar 

  • Livshits, L.A., Malyarchuk, S.G., Lukyanova, E.M., Antipkin, Y.G., Arabskaya, L.P., Kravchenko, S.A., Matsuka, G.H., Petit, E., Giraudeau, F., Gourmelon, P., Vergnaud, G., and Le Guen, B., 2001, Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles. Radiat Res. 155:74–80.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M.F., Phillips, R.J.S., and Bailey, HJ., 1972, Mutagenic effects of repeated small doses to mouse spermatogonia. I. Specific-locus mutation rates. Mutat Res. 15:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Marchetti, F., Bishop, J.B., Lowe, X., Generoso, W.M., Hozier, J., and Wyrobek, A.J., 2001, Etoposide induces heritable chromosome aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci USA. 98:3952–3957.

    Article  PubMed  CAS  Google Scholar 

  • May, C.A., Jeffreys, A.J., and Armour, J.A.L., 1996, Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). Hum Mol Genet. 5:1823–1833.

    Article  PubMed  CAS  Google Scholar 

  • May, C.A., Tamaki, K., Neumann, R., Wilson, G., Zagars, G., Pollack, A., Dubrova, Y.E., Jeffreys, A.J., and Meistrich, M.L., 2000, Minisatellite mutation frequency in human sperm following radiotherapy. Mutat Res. 453:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, W.F., Day, J.P., Kaplan, M.I., McGhee, E.M., and Limoli, C.L., 1996, Genomic instability induced by ionizing radiation. Radiat Res. 146:247–258.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.V., Schull, W.J., Awa, A.A., Satoh, C., Kato, H., Otake, M., and Yoshimoto, Y., 1990, The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am J Hum Genet. 46:1053–1072.

    PubMed  CAS  Google Scholar 

  • Olaisen, B., Bekkemoen, M., Hoff-Olsen, P., and Gill, P., 1993, Human VNTR and sex, in: DNA Fingerprinting: State of the Science, S.D.J. Pena, R. Chakraborty, J.T. Epplen and A.J. Jeffreys, eds., Birkhauser, Basel, 63–69.

    Google Scholar 

  • Pitkevitch, V.A., Ivanov, V. K., Tsyb, A. F., Maksyoutov, M. A., Matiash V. A., and Shchukina, N. V., 1997, Exposure levels for persons involved in recovery operations after the Chernobyl accident. Statistical analysis based on the data of the Russian National Medical and Dosimetric Registry (RNMDR). Radiat Environ Biophys. 36:149–160.

    Article  PubMed  CAS  Google Scholar 

  • Roemer, I., Reik, W., Dean, W., and Klose, J., 1997, Epigenetic inheritance in the mouse. Current Biol. 7:277–280.

    Article  CAS  Google Scholar 

  • Russell, W.L., 1965, Studies in mammalian radiation genetics. Nucleonics. 23:53–62.

    Google Scholar 

  • Russell, W.L., and Kelly, E.M., 1982, Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc Natl Acad Sci USA. 79:542–544.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B., Hunsicker, P.R., Johnson, D.K., and Shelby, M.D., 1998, Unlike other chemicals, etoposide (a topoisomerase-II inhibitor) produces peak mutagenicity in primary spermatocytes of the mouse. Mutat Res. 400:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto, S., Suzuki, S., Kamiya, K., Kominami, R., Dohi, K., and Niwa, O., 1994, Radiation induction of germline mutation at a hypervariable mouse minisatcllite locus. Int J Radiat Biol. 65:549–557.

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan, K., 1999, Ionizing radiation and genetic risks X. The potential “disease phenotypes” of radiation-induced genetic damage in humans: perspectives from human molecular biology and radiation genetics. Mutat Res. 429:45–83.

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan, K., and Chakraborty, R., 2000, Ionizing radiation and genetic risks XI. The doubling dose estimates from the mid-1950s to present and the conceptual change to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations. Mutat Res. 453:107–127.

    Article  PubMed  CAS  Google Scholar 

  • Searle, A.G., 1974, Mutation induction in mice. Adv Radiat Biol. 4:131–207.

    Google Scholar 

  • Schiestl, R.H., Khogali, F., and Carls, N., 1994, Reversion of the mouse pink-eyed unstable mutation induced by low doses of x-rays. Science. 266:1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Stead, J.D.H., and Jeffreys, A.J., 2000, Allele diversity and germline mutation at the insulin minisatellite. Hum Mol Genet. 9:713–723.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, K., May, C.A., Dubrova, Y.E., and Jeffreys, A.J., 1999, Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum Mol Genet. 8:879–888.

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR, 1993, Sources and Effects of Ionizing Radiation, United Nations, New York.

    Google Scholar 

  • Vergnaud, G., and Denoeud, F., 2000, Minisatellites: mutability and genome architecture. Genome Res. 10:899–907.

    Article  PubMed  CAS  Google Scholar 

  • Vilenchik, M. M., and Knudson, A.G., 2000, Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates, Proc. Natl. Acad. Sci. U.S.A. 97: 5381–5386.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, D.T., 1996, Regulation and repair of double-strand DNA breaks. Crit Rev Euk Gene Exp. 64:345–375.

    Article  Google Scholar 

  • Wheeler, J.M.D., Beck, N.E., Kim, H.C., Tomlinson, I.P.M., Mortensen, N.J.M., and Bodmer, W.F., 1999, Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: The predominant role of hMLHl. Proc Nati Acad Sci USA. 96:10296–10301.

    Article  CAS  Google Scholar 

  • Witt, K.L., and Bishop, J.B., 1996, Mutagenicity of anticancer drugs in mammalian germ cells. Mutat Res. 355:209–234.

    Article  PubMed  Google Scholar 

  • Yauk, C.L., and Quinn, J.S., 1996, Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc Natl Acad Sci USA. 93:12137–12141.

    Article  PubMed  CAS  Google Scholar 

  • Yauk, C.L., Fox, G.A., McCarry, B.E, and Quinn, J.S., 2000, Induced minisatellite mutations in herring gulls (Larus argentatus) living near steel mills. Mutai Res. 452:211–218.

    Article  CAS  Google Scholar 

  • Zheng, N., Monckton, D.G., Wilson, G., Hagemeister, F., Chakraborty, R,, Connor, T.H., Siciliano, M.J., and Meistrich, M.L., 2000, Frequency of minisatellite repeat number changes at the MS205 locus in human sperm before and after cancer chemotherapy. Environ Mol Mutagen. 36:134–145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubrova, Y.E. (2003). Germline Mutation Induction at Mouse and Human Tandem Repeat DNA Loci. In: Robaire, B., Hales, B.F. (eds) Advances in Male Mediated Developmental Toxicity. Advances in Experimental Medicine and Biology, vol 518. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9190-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9190-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4829-0

  • Online ISBN: 978-1-4419-9190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics