Group Delay Description For Broadband Pulses

  • M. Ware
  • S. A. Glasgow
  • J. Peatross
Conference paper


The traditional concept of group delay usually arises in connection with an expansion of the phase delay for an electromagnetic pulse. In this context, the group delay function (evaluated at a single ’carrier’ frequency) describes the time required for a pulse to traverse a given displacement. However, if the bandwidth of the pulse encompasses a substantial portion of a resonance structure the expansion fails to converge over the relevant range of frequencies. Because of this failure, traditional group delay suffers severe shortcomings when applied to broadband pulse propagation.1 4 We recently introduced a method for describing pulse delay5,6 in which the group delay function naturally arises. In contrast to the traditional formulation of group delay, this method retains validity for pulses of arbitrary bandwidth propagating in linear dielectrics (including cases where the spectrum overlaps resonances in the medium). In this work we give an overview of this method of description and demonstrate how it may be applied to gain insight into the behavior of broadband electromagnetic pulses. As an illustration we show how the method may be applied to the well-known precursor problem, where the traditional formulation of group delay fails.


Group Delay High Frequency Component Electromagnetic Pulse Total Delay Absorption Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and E. Wolf, Principles of Optics, sixth ed. (Pergamon, Oxford, 1930).Google Scholar
  2. 2.
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).Google Scholar
  3. 3.
    K. E. Oughstun and H. Xiao, Failure of the Quasimonochromatic Approximation for Ultrashort Pulse Propagation in a Dispersive, Attenuative Medium, Phys. Rev. Lett. 78, 642–645 (1997).CrossRefGoogle Scholar
  4. 4.
    H. Xiao and K. E. Oughstun, Failure of the group-velocity description for ultrawideband pulse propagation in a causally dispersive, absorptive dielectric, J. Opt. Soc. Am. B 16, 1773–1785 (1999).Google Scholar
  5. 5.
    J. Peatross, S. A. Glasgow, and M. Ware, Average Energy Flow of Optical Pulses in Dispersive Media, Phys. Rev. Lett. 84, 2370–2373 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Ware, S. A. Glasgow, and J. Peatross, The Role of Group Velocity in Tracking Field Energy in Linear Dielectrics, Opt. Express (2001).Google Scholar
  7. 7.
    R. L. Smith, The Velocities of Light, Am. J. Phys. 38, 978–984 (1970).CrossRefGoogle Scholar
  8. 8.
    M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, Energy Flow in Angularly Dispersive Optical Systems, J. Opt. Soc. Am. B 18, 839–845 (2001).Google Scholar
  9. 9.
    R. Y. Chiao, Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations, Phys. Rev. A 48, R34–R37 (1993).Google Scholar
  10. 10.
    R. Y. Chiao and A. M. Steinberg, Tunneling Times and Superluminality, Progress in Optics 37, 347–406 (Emil Wolf ed., Elsevier, Amsterdam, 1997).Google Scholar
  11. 11.
    S. Chu and S. Wong, Linear Pulse Propagation in an Absorbing Medium, Phys. Rev. Lett. 48, 738–741 (1982).CrossRefGoogle Scholar
  12. 12.
    E. L. Bolda, J. C. Garrison, and R. Y. Chiao, Optical pulse propagation at negative group velocities due to a nearby gain line, Phys. Rev. A 49, 2938–2947 (1994).Google Scholar
  13. 13.
    C. G. B. Garrett and D. E. McCumber, Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium, Phys. Rev. A 1, 305–313 (1970).Google Scholar
  14. 14.
    S. A. Glasgow, M. Ware, and J. Peatross, Poynting’s Theorem and Luminal Energy Transport Velocity in Causal Dielectrics, Phys. Rev. E 64, 046610-1-046610-14 (2001).Google Scholar
  15. 15.
    J. Peatross, M. Ware, and S. A. Glasgow, The Role of the Instantaneous Spectrum in Pulse Propagation in Causal Linear Dielectrics, J. Opt. Soc. Am. A 18, 1719–1725 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Ware, S. A. Glasgow, and J. Peatross, Energy Transport in Linear Dielectrics, Opt. Express, (2001).Google Scholar
  17. 17.
    K. E. Oughstun and C. M. Balictsis, Gaussian Pulse Propagation in a Dispersive, Absorbing Dielectric, Phys. Rev. Lett. 77, 2210–2213 (1996).CrossRefGoogle Scholar
  18. 18.
    K. E. Oughstun and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, New York, 1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. Ware
    • 1
  • S. A. Glasgow
    • 2
  • J. Peatross
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburg
  2. 2.Brigham Young UniversityProvo

Personalised recommendations