Advertisement

Colloidal Aggregation in Two-Dimensions

  • A. Moncho-Jordá
  • F. Martínez-López
  • M. Quesada-Pérez
  • M. A. Cabrerizo-Vílchez
  • R. Hidalgo-Álvarez
Chapter
Part of the Surface and Colloid Science book series (SACS, volume 17)

Abstract

Recently, the behavior of colloidal dispersions confined in a two dimensional geometry has drawn wide interest(1-28) Two-dimensional colloidal systems can be obtained in several experimental ways. Systems consisting of particles confined between two charged plates(29-31) trapped at a liquid-liquid (7,12,24,25) or liquid-air interfaces (1,4-6,8,9,17-23) are typical examples. The formation of colloidal monolayers is especially interesting due to the ability of particles to affect the stability of emulsions, foams and interfacial properties. However, the theoretical description of colloidal stability in inierfacial systems has additional difficulties in comparison with the three-dimensional case(19,22,32-34 For instance, since colloidal particles are trapped at the liquid interface due to electrostatic forces and surface tension, the interaction forces between them depend on their degree of wetting.(35) In addition, there are new forces that do not appear in threedimensional suspensions, as repulsive dipole-dipole interactions or capillary effects, which produce intense attractive forces among large aggregates, affecting the final stage of the aggregation process at the interface.(36)

Keywords

Contact Angle Fractal Dimension Surface Charge Density Harmonic Measure Iterate Function System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vincze, L. Dernkó, M. Vörös, M. Zrinyi, M.N. Esmail and Z. Hórvölgyi, J. Phys. Chem. B 106,2404(2002).Google Scholar
  2. 2.
    A. E. González, F. Martinez-López, A. Moncho-Jordá and R. Hidalgo-Alvarez, J. Colloid Interface Sci. 246, 227 (2002).Google Scholar
  3. 3.
    P. A. Kralchevsky and N. D. Denkov, Curr. Opin. Colloid Interface Sci 6, 383 (2001).Google Scholar
  4. 4.
    F. Ghezzi, J. C. Earnshaw, M. Finnis and M. McCluney, J. Colloid Interface Sci. 238, 433 (2001).Google Scholar
  5. 5.
    A. Vincze, A. Agod, J. Kertész, M. Zrínyi, and Z. Hórvölgyi, J. Chem. Phys. 114, 520 (2001).Google Scholar
  6. 6.
    F. Martinez-López, M. A. Cabrerizo-Vilchez and R. Hidalgo-Álvarez, Physica A 291, 1 (2001).Google Scholar
  7. 7.
    J. Sun and T. Stirner, Langmuir 17, 3103 (2001).Google Scholar
  8. 8.
    F. Martínez-López, M. A. Cabrerizo-Vilchez and R. Hidalgo-Álvarez, Progr. Colloid Polym. Sci. 118, 123 (2001).Google Scholar
  9. 9.
    S. J. Mejía-Rosales, R. Gámez-Corrales, B. I. Ivlev and J. Ruiz-Garcia, Physica A 276, 30 (2000).Google Scholar
  10. 10.
    A. Moncho-Jordá, F. Martinez-López and R. Hidalgo-Álvarez, Physica A 282, 50 (2000).Google Scholar
  11. 11.
    F. Martínez-López, M. A. Cabrerizo-Vílchez and R. Hidalgo-Álvarez, J. Colloid Interface Sci. 232, 303 (2000).Google Scholar
  12. 12.
    R. Aveyard, J. H. Clint, D. Nées, and V. N. Paunov, Langmuir 16, 1969 (2000).Google Scholar
  13. 13.
    A. Moncho-Jordá, G. Odriozola, F. Martínez-López, A. Schmitt and R. Hidalgo-Álvarez, Eur. Phys.J.E. 5, 471 (2001).Google Scholar
  14. 14.
    P. H. F. Hansen and L. Bergström, J. Colloid Interface Sci 218, 77 (1999).Google Scholar
  15. 15.
    P. H. F. Hansen, M. Malmsten, B. Bergenstahl and L. Bergström, J. Colloid Interface Sci 220, 269 (1999).Google Scholar
  16. 16.
    S. Maenosono, C. D. Dushkin, Y. Yamaguchi, K. Nagayama and Y. Tsuji, Colloid Polym. Sci. 277, 1152 (1999).Google Scholar
  17. 17.
    Abd el Kader and J. C. Earnshaw, Phys. Rev. E 58, 760 (1998).Google Scholar
  18. 18.
    J. Ruiz-Garcia and B. I. Ivlev, Mol. Phys. 95, 371 (1998).Google Scholar
  19. 19.
    J. Ruiz-García, R. Gámez-Corrales and B. I. Ivlev, Physica A 236, 97 (1997).Google Scholar
  20. 20.
    Abd El Kader and J. C. Earnshaw, Phil. Mag. A 76, 1251 (1997).Google Scholar
  21. 21.
    Abd El Kader and J. C. Earnshaw, Phys. Rev. E 56, 3251 (1997).Google Scholar
  22. 22.
    F. Ghezzi and J. C. Earnshaw, J. Phys: Condens. Matter 9, L517 (1997).Google Scholar
  23. 23.
    J. C. Earnshaw, M. B. J. Harrison and D. J. Robinson, Phys. Rev. E 53, 6155 (1996).Google Scholar
  24. 24.
    T. Takahashi, A. S. Dimitrov and K. Nagayama, J. Phys. Chem. 100, 3157 (1996).Google Scholar
  25. 25.
    A. S. Dimitrov, T. Takahashi, K. Furusawa and K. Nagayama, J. Phys. Chem. 100, 3163 (1996).Google Scholar
  26. 26.
    K. Nagayama, Colloids Surf. A: Physicochem. Eng. Aspects 109, 363 (1996).Google Scholar
  27. 27.
    Z. Hórvölgyi, J. H. Fendler, M. Máté and M. Zrinyi, Progr. Colloid Polym. Sci. 102, 126 (1996).Google Scholar
  28. 28.
    J. C. Earnshaw and D. J. Robinson, Physica 214, 23 (1995).Google Scholar
  29. 29.
    G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994).Google Scholar
  30. 30.
    J. C. Crocker and D. Grier, Phys. Rev. Lett. 77, 1897 (1996).Google Scholar
  31. 31.
    M. D. Carbajal-Tinoco, F. Castro-Román and J. L. Arauz-Lara, Phys. Rev. E 53, 3745 (1996).Google Scholar
  32. 32.
    P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).Google Scholar
  33. 33.
    J. Stankiewicz, M.A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, Phys. Rev. E 47, 2663 (1993).Google Scholar
  34. 34.
    D. J. Robinson and J.C. Earnshaw, Langmuir 9, 1436 (1993).Google Scholar
  35. 35.
    D. F. Williams, in Aggregation of Colloidal Particles at the Air-Water Interface, Ph. D dissertation, University of Washington, 1991.Google Scholar
  36. 36.
    D. Y. C. Chan, J. D. Henry J. R., and L. R, White, J. Colloid Interface Sci. 79, 410 (1981).Google Scholar
  37. 37.
    A. J. Hurd and D. W. Schaefer, Phys. Rev. Lett. 54, 1043 (1985).Google Scholar
  38. 38.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).Google Scholar
  39. 39.
    M. Kolb and R. Jullien, J. Phys (Paris) Lett 45, L977 (1984).Google Scholar
  40. 40.
    R. Botet, R. Jullien and M. Kolb, J. Phys. A 17, L75 (1994).Google Scholar
  41. 41.
    P. Meakin, T. Vicsek and F. Family, Phys. Rev. B. 31, 564 (1985).Google Scholar
  42. 42.
    R. Jullien and M. Kolb, J. Phys. A: Math. Gen. 17, L639 (1984).Google Scholar
  43. 43.
    W. D. Brown and R.C. Ball, J. Phys. A: Math. Gen. 18, L517 (1985).Google Scholar
  44. 44.
    M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein and P. Meakin, Phys. Rev. A 41, 2005 (1990).Google Scholar
  45. 45.
    S. R. Forrest and T. A. Witten, J. Phys. A 12, L109 (1979).Google Scholar
  46. 46.
    P. Meakin, Phys. Rev. A 38, 4799 (1988).Google Scholar
  47. 47.
    M. von Smoluchowski, Phys. Z. 17, 557 (1916).Google Scholar
  48. 48.
    M. von Smoluchowski, Z. Phys. Chem., 92, 129 (1917).Google Scholar
  49. 49.
    F. Family, P. Meakin and F. Vicsek, J. Chem. Phys. 83, 4144 (1985).Google Scholar
  50. 50.
    P.G.J. van Dongen, Phys. Rev. Lett. 63, 1281 (1989).Google Scholar
  51. 51.
    K. Kang, S. Redner, P. Meakin and F. Leyvraz, Phys. Rev. A 33, 1171 (1986).Google Scholar
  52. 52.
    M. D. Haw, M. Sievwright, W. C. K. Poon, and P. N. Pusey, Physica A 217, 231 (1995).Google Scholar
  53. 53.
    W. G. Hanan, D. M. Hefferman and J. C. Earnshaw, Chaos, Solitons & Fractals 9, 875 (1998).Google Scholar
  54. 54.
    M. L. Broide and R. J. Cohen, Phys. Rev. Lett. 64, 2026 (1990).Google Scholar
  55. 55.
    N. G. van Kampen, in Stochastic Processes in Physics and Chemistry, North Holland, 1987.Google Scholar
  56. 56.
    D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).Google Scholar
  57. 57.
    M. Thorn and M. Seesselberg, Phys. Rev. Lett. 72, 3622 (1994).Google Scholar
  58. 58.
    G. Odriozola, A. Moncho-Jordá, A. Schmitt, J. Callejas-Fernández, R. Martinez-García and R. Hidalgo-Álvarez, Europhys. Lett. 53, 797 (2001).Google Scholar
  59. 59.
    K. Kang and S. Redner, Phys. Rev. A 30, 2833 (1984).Google Scholar
  60. 60.
    R. M. Ziff, E. D, McGrady and P. Meakin, J. Chem. Phys. 82, 5269 (1985).Google Scholar
  61. 61.
    P. G. J. van Dongen and M. H. Ernst, J. Phys. A: Math. Gen. 18, 2779 (1985).Google Scholar
  62. 62.
    P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1396 (1985).Google Scholar
  63. 63.
    T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1669 (1984).Google Scholar
  64. 64.
    D. J. Robinson and J. C. Earnshaw, Phys. Rev. A 46, 2055 (1992).Google Scholar
  65. 65.
    F. Martínez-Lóp ez, M. A. Cabrerizo-Vilchez, and R. Hidalgo-Álvarez, J. Physics A. Math. Gen. 34, 7393 (2001).Google Scholar
  66. 66.
    F. Martínez-López, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, Physica A 298, 387 (2001).Google Scholar
  67. 67.
    D. J. Robinson and J. C. Earnshaw, Phys. Rev. A 46, 2045 (1992).Google Scholar
  68. 68.
    J. Feder, in Fractals, Plenum Press, 1989.Google Scholar
  69. 69.
    T. Vicsek, in Fractal Growth Phenomena, World Scientific, 1992.Google Scholar
  70. 70.
    J. K. G. Dhont, in An Introduction to the Dynamics of Colloids, Elsevier, 1996.Google Scholar
  71. 71.
    W. Gardiner, in Handbook of Stochastic Methods, Springer-Verlag, 1997.Google Scholar
  72. 72.
    H. Risken, in The Fokker-Planck Equation. Method of Solution and Applications, Springerverlag, 1989.Google Scholar
  73. 73.
    M. Puertas, J. A. Maroto, A. Fernández-Barbero and F. J. De las Nieves, Phys. Rev. E 59, 1943 (1999).Google Scholar
  74. 74.
    A. E. González, Phys. Lett. A 171, 293 (1992).Google Scholar
  75. 75.
    A. E. González, J. Phys. A: Math. Gen. 26, 4215 (1993).Google Scholar
  76. 76.
    A. E. González, Phys. Rev. Lett. 71, 2248 (1993).Google Scholar
  77. 77.
    A. E. González, Phys. Rev. E 47 2923 (1993).Google Scholar
  78. 78.
    Z. Zahn, J. M. Méndez-Alcaraz and G. Maret, Phys. Rev. Lett. 79, 175 (1997).Google Scholar
  79. 79.
    J. Armstrong, R. C. Mockler and W. J. O'Sullivan, J. Phys. A 19, L123 (1986).Google Scholar
  80. 80.
    T. Skjeltorp, Phys. Rev. Lett. 58, 1444 (1987).Google Scholar
  81. 81.
    R. Jullien, Croat. Chem. Acta 65, 215 (1992).Google Scholar
  82. 82.
    A. Moncho-Jordá, G. Odriozola, F. Martínez-López, A. Schmitt and R. Hidalgo-Álvarez, Eur. Phys.J. E 5, 471 (2001).Google Scholar
  83. 83.
    A. Marmur, J. Colloid Interface Sci. 72, 41 (1979).Google Scholar
  84. 84.
    F. Calogero and F. Leyvraz, J. Phys. A: Math. Gen. 32, 7697 (1999).Google Scholar
  85. 85.
    R. C. Ball, D. A. Weitz, T. A. Wirten and F. Leyvraz, Phys. Rev. Lett. 58, 274 (1987).Google Scholar
  86. 86.
    A. Schmitt, G. Odriozola, A. Moncho-Jordá, J. Callejas-Fernández, R. Martinez-García and R. Hidalgo-Álvarez, Phys. Rev. E 62, 8335 (2000).Google Scholar
  87. 87.
    K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).Google Scholar
  88. 88.
    M. Thorn, M. L. Broide and M. Seesselberg, Phys. Rev. E 51, 4089 (1995).Google Scholar
  89. 89.
    K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985).Google Scholar
  90. 90.
    F. Family, P. Meakin and J. M. Deutch, Phys. Rev. Lett. 57, 727 (1986).Google Scholar
  91. 91.
    L. Peliti, J. Phys. A: Math. Gen. 19, L365 (1986).Google Scholar
  92. 92.
    P. Meakin and M. H. Ernst, Phys. Rev. Lett. 24, 2503 (1988).Google Scholar
  93. 93.
    P. G. J. van Dongen, J. Stat. Phys. 53, 221 (1988).Google Scholar
  94. 94.
    P. G. J. van Dongen, J. Stat. Phys. 54, 221 (1989).Google Scholar
  95. 95.
    M. Carpineti and M. Giglio, Phys. Rev. Lett. 70, 3828 (1993).Google Scholar
  96. 96.
    M. D. Haw, W. C. K. Poon and P. N. Pusey, Physica A 208, 8 (1994).Google Scholar
  97. 97.
    J. C. Earnshaw and D. J. Robinson, Physica A 214, 23 (1995).Google Scholar
  98. 98.
    A. Hasmy and R. Jullien, Phys. Rev. E 53, 1789 (1996).Google Scholar
  99. 99.
    Q. Wei, M. Han, C. Zhou and N. Ming, Phys. Rev. E 49, 4167 (1994).Google Scholar
  100. 100.
    H. J. Herrmann and M. Kolb, J. Phys. A: Math. Gen. 19, L1027 (1986).Google Scholar
  101. 101.
    J. P. Wilcoxon, J. E. Martin and D. Schaefer, Phys. Rev. A 39, 2675 (1989).Google Scholar
  102. 102.
    M. Carpineti, F. Ferri, M. Giglio, E. Paganini and U. Perini, Phys. Rev. A 42, 7347 (1990).Google Scholar
  103. 103.
    M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein and P. Meakin, J. Phys. Condens. Matter 2, 3093 (1990).Google Scholar
  104. 104.
    M. Lach-hab, A. E. González and E. Blaisten-Barojas, Phys. Rev. E 57, 4520 (1998).Google Scholar
  105. 105.
    M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein and P. Meakin, Froc. R. Soc. London A 423, 71 (1989).Google Scholar
  106. 106.
    D. Asnaghi, M. carpineti, M. Giglio and M. Sozzi, Phys. Rev. A 45, 1018 (1992).Google Scholar
  107. 107.
    M. Carpineti and M. Giglio, Phys. Rev. Lett. 68, 3327 (1992).Google Scholar
  108. 108.
    T. Sintes and R. Toral, Phys. Rev. E 50, R3330 (1994).Google Scholar
  109. 109.
    F. F. Abraham, S. W. Koch and R. C. Desai, Phys. Rev. Lett. 49, 923 (1982).Google Scholar
  110. 110.
    S. W. Koch, R. C. Desai and F. F. Abraham, Phys. Rev. A 27, 2152 (1983).Google Scholar
  111. 111.
    W. Y. Shih, J. Liu, W. H. Shih and I. A. Aksay, J. Stat. Phys. 62, 961 (1991).Google Scholar
  112. 112.
    G. Ramirez-Santiago and A. E. Gonzalez, PhysicaA 236, 75 (1997).Google Scholar
  113. 113.
    F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 74, 282 (1995).Google Scholar
  114. 114.
    J. Robinson and J. C. Earnshaw, Phys. Rev. Lett. 71, 715 (1993).Google Scholar
  115. 115.
    J. C. Earnshaw, M. B. J. Harrison and D. J. Robinson, Phys. Rev. E 53, 6155 (1996).Google Scholar
  116. 116.
    H. Furukawa, Ach. Phys. 34, 703 (1985).Google Scholar
  117. 117.
    K. Binder and D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974).Google Scholar
  118. 118.
    J. S. Langer, in Solids Far From Equilibrium, Cambridge University Press, Cambridge, 1992.Google Scholar
  119. 119.
    M. Carpineti, M. Giglio and V. Degiorgio, Phys. Rev. E 51, 590 (1995).Google Scholar
  120. 120.
    J. Bibette, T. G. Mason, H. Gang and D. A. Weitz, Phys. Rev. Lett. 69, 981 (1992).Google Scholar
  121. 121.
    M. Marder, Phys. Rev. A 36, 438 (1987).Google Scholar
  122. 122.
    J. A. Glazier, S. P. Gross and J. Stavans, Phys. Rev. A 36, 306 (1987).Google Scholar
  123. 123.
    J. Stavans and J. A. Glazier, Phys. Rev. Lett. 62, 1318 (1989).Google Scholar
  124. 124.
    J. Stavans, Phys. Rev. A 42, 5049 (1990).Google Scholar
  125. 125.
    J. J. Chae and M. Tabor, Phys. Rev. E 55, 598 (1997).Google Scholar
  126. 126.
    J. R. Iglesias and R. M. C. de Almeida, Phys. Rev. A 43, 2763 (1991).Google Scholar
  127. 127.
    A. Levitan, Phys. Rev. Lett. 72, 4057 (1994).Google Scholar
  128. 128.
    W. Y. Tarn, Phys. Rev. E 58, 8032 (1998).Google Scholar
  129. 129.
    N. Rivier, Phil. Mag. B 52, 795 (1985).Google Scholar
  130. 130.
    J. C. M. Mombach, R. C. M. Almeida and J. R. Iglesias, Phys. Rev. E 48, 598 (1993).Google Scholar
  131. 131.
    P. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson and S. A. Safran, Phys. Rev. B 28, 2705 (1983).Google Scholar
  132. 132.
    P. Jedlovszky, J. Chem. Phys. 111, 5975 (1999).Google Scholar
  133. 133.
    J. O'Rourke, in Computational Geometry in C, Cambridge University Press, 1994.Google Scholar
  134. 134.
    N. Rivier and A. Lissowski, J. Phys. A: Math. Gen. 15, L143 (1982).Google Scholar
  135. 135.
    J. C. Earnshaw and D. J. Robinson, Phys. Rev. Lett. 72, 3682 (1994).Google Scholar
  136. 136.
    J. Stankiewicz, M. A. Cabrerizo-Vílchez, R. Hidalgo-Alvarez, and F. Martínez-López, Progr. Colloid Polym. Sci. 93, 358 (1993).Google Scholar
  137. 137.
    D. Stamou, C. Duschl and D. Johannsmann, Phys Rev. E 62, 5263 (2000).Google Scholar
  138. 138.
    G. S. Lazarov, N. D. Denkov, O. D. Velev, P. A. Krachelvsky and K. Nagoyama, J. Chem. Faraday Trans. 90, 2077 (1994).Google Scholar
  139. 139.
    K. P. Velikov, F. Dust and O. D. Velev, Langmuir 14, 1148 (1998).Google Scholar
  140. 140.
    R. Jullien, J. Phys. A 19, L2129 (1986).Google Scholar
  141. 141.
    Z. Hórvölgyi, M. Máté, and M. Zrínyi, Colloids Surf. A: Physicochem. Eng. Aspects 84, 207 (1994).Google Scholar
  142. 142.
    P. B. Warren, R. C. Ball and A. Boelle, Europhys Lett. 29, 339 (1995).Google Scholar
  143. 143.
    R. Botet and R. Jullien, J. Phys A 19, L907 (1986).Google Scholar
  144. 144.
    B.V. Derjaguin and L. Landau, Acta Physicochim. USSR 14, 633 (1941).Google Scholar
  145. 145.
    J. W. Verwey and J. Th. G. Overbeek, in Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar
  146. 146.
    B.V. Derjaguin and N.V. Churaev, Colloids Surf. 41, 223 (1989).Google Scholar
  147. 147.
    J. Israelachvili and R.M. Pashley, J Colloid Interface Sci. 98, 500 (1987).Google Scholar
  148. 148.
    N. V. Churaev, Usp. Kollid Khim., 70 (1987).Google Scholar
  149. 149.
    H. K. Christenson and P. M. Claesson, Science 239, 390 (1988).Google Scholar
  150. 150.
    J. Israelachvili, in Intermolecular and Surface Forces, Second Edition, Academic Press, San Diego, 1992.Google Scholar
  151. 151.
    M. L. Gee and J. N. Israelachvili, J. Chem. Soc, Faraday Trans. 86, 4049 (1990).Google Scholar
  152. 152.
    S. Levine and B. D. Bowen, Colloids Surf. 59, 377 (1991).Google Scholar
  153. 153.
    S. Levine and B. D. Bowen, Colloids Surf. 65, 273 (1992).Google Scholar
  154. 154.
    S. Levine and B. D. Bowen, Colloids Surf. 70, 33 (1993).Google Scholar
  155. 155.
    P. A. Kralchevsky, N. D. Denkov, and K. D. Danov, Langmuir 17, 7694 (2001).Google Scholar
  156. 156.
    P. A. Kralchevsky, N. D. Denkov, V. N. Paunov, O. D. Velev, I. B. Ivanov, H. Yashimura and K. Nagayama, J. Phys: Condens Matter 6, A395 (1994).Google Scholar
  157. 157.
    Z. Hórvölgyi, G. Medveczky and M. Zrínyi, Colloid Polym. Sci. 271, 396 (1993).Google Scholar
  158. 158.
    Z. Hórvölgyi, G. Medveczky and M. Zrinyi, Colloids Surf. 60, 79 (1991).Google Scholar
  159. 159.
    Z. Hórvöl gyi, S. Németh and J.H. Fendler, Colloids Surf. A: Physicochem. Eng. Aspects 71, 327 (1993).Google Scholar
  160. 160.
    A. J. Hurd, J. Phys. A 18, L1055 (1985).Google Scholar
  161. 161.
    F. H. Stillinger, J. Chem. Phys. 35, 1584 (1961).Google Scholar
  162. 162.
    B. V. Derjaguin, Kolloid Z. 69, 155 (1934).Google Scholar
  163. 163.
    M. P. Lyne, in Electrostatic Interactions between Interfacial Particles, M. Sc. dissertation, University of. British Columbia, 1989.Google Scholar
  164. 164.
    S. Levine and M.P. Lyne, 63rd ACS Colloid and Surfaces Science Symposium, Seattle, Washington 1989.Google Scholar
  165. 165.
    J. Gregory, J. Colloid Interface Sci. 83, 138 (1981).Google Scholar
  166. 166.
    J. Th. G. Overbeek, Proc. K. Akad. Wet. B 69, 501 (1966).Google Scholar
  167. 167.
    B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).Google Scholar
  168. 168.
    R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A 17, 3521 (1984).Google Scholar
  169. 169.
    G. Paladin and A. Vulpiani, Physics Reports 156, 145 (1987).Google Scholar
  170. 170.
    C. Meneveau and K.R. Sreenivasan, J. Fluid Mech. 224, 429 (1991).Google Scholar
  171. 171.
    U. Frisch and M. Vergassola, Europhys. Lett. 14, 439 (1991).Google Scholar
  172. 172.
    K. J. Falconer, in Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.Google Scholar
  173. 173.
    Fractals and Disordered Systems, A. Bunde and S. Havlin (eds.), Springer-Verlag, Heidelberg, 1991.Google Scholar
  174. 174.
    Fluctuations and Pattern Formation, H. E. Stanley, N. Ostrowsky (eds.), Dordrecht-Boston, Kluwer, Cargèse, 1988.Google Scholar
  175. 175.
    A.P. Siebesma and P. Pietronero, Europhys. Lett. 4, 597 (1987).Google Scholar
  176. 176.
    R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62, 2977 (1989).Google Scholar
  177. 177.
    G.G. Batrouni and A. Hansen, S. Roux, Phys. Rev. A 28, 3820 (1988).Google Scholar
  178. 178.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).Google Scholar
  179. 179.
    T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Scraiman, Phys. Rev. A 33, 1141 (1996).Google Scholar
  180. 180.
    H. G. Schuster, Deterministic Chaos, VCH Publishers, Weinheim, New York, 1988.Google Scholar
  181. 181.
    S.D. Feit, Comm. Math. Phys. 61, 249 (1978).Google Scholar
  182. 182.
    P. Grassberger, Phys. Lett. A 97, 227 (1983).Google Scholar
  183. 183.
    H. Hentschel and I. Procaccia, Physica D 8, 435 (1983).Google Scholar
  184. 184.
    A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327 (1989).Google Scholar
  185. 185.
    P. Meakin, Physica D 86, 104 (1995).Google Scholar
  186. 186.
    P. Meakin, Phys. Rev. A 35, 2234 (1987).Google Scholar
  187. 187.
    H. O. Peitgen, H. Jürgens, and D. Saupe, in Chaos and Fractals. New Frontiers of Science, Springer, New York, 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. Moncho-Jordá
    • 1
  • F. Martínez-López
    • 2
  • M. Quesada-Pérez
    • 3
  • M. A. Cabrerizo-Vílchez
    • 2
  • R. Hidalgo-Álvarez
    • 2
  1. 1.Departamento de Física, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain
  2. 2.Grupo de Física de Fluídos y Biocoloides, Departamento deFísica Aplicada, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Física de la Universidad de JaénEscuela Politécnica UniversitariaLinares, JaénSpain

Personalised recommendations