Advertisement

Heat Transfer by Convection

  • Carl J. Hansen
  • Steven D. Kawaler
  • Virginia Trimble
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

The major portion of this chapter will be devoted to a discussion of the “mixing length theory,” or “MLT,” of convective heat transport in stars. Although this theory has many faults, it has served as a useful phenomenological model for a description of stellar convection for more than 40 years and most numerical simulations of stellar evolution use it in one guise or another. Near the end of the chapter we shall discuss alternatives to the MLT and why a realistic description of convection is so difficult.

Keywords

Heat Transfer Convection Zone Scale Height Stellar Model Main Sequence Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.5 References and Suggested Readings

§5.1: The Mixing Length Theory

  1. ⊳.
    Cox, J. P. 1968, Principles of Stellar Structure, in two volumes (New York: Gordon & Breach)Google Scholar
  2. ⊳.
    Gough, D. O., & Weiss, N. O. 1976, MNRAS, 176, 589.ADSGoogle Scholar
  3. ⊳.
    Hansen, C. J., & Kawaler, S. D. 1994, Stellar Interiors: Physical Principles, Structure, and Evolution, 1st ed. (New York: Springer-Verlag).Google Scholar
  4. ⊳.
    Schwarzschild, K. 1906, GottNach, 1, 41Google Scholar
  5. ⊳.
    Biermann, L. 1951, ZsAp, 28, 304MATHGoogle Scholar
  6. ⊳.
    Prandtl, L. 1952, Essentials of Fluid Dynamics (London: Blakie)MATHGoogle Scholar
  7. ⊳.
    Vitense, E. 1953, ZsAp, 32, 135Google Scholar
  8. ⊳.
    Böhm-Vitense, E. 1958, ZsAp, 46, 108.Google Scholar
  9. ⊳.
    Spiegel, E. A. 1971, ARA&A, 9, 323.ADSCrossRefGoogle Scholar
  10. ⊳.
    Landau, L. D., & Lifshitz, E. M. 1959, Fluid Mechanics (Reading: Addison-Wesley)Google Scholar

§5.2: Variations on the MLT

  1. ⊳.
    Chan, K. L., & Sofia, S. 1987, Science, 235, 465ADSCrossRefGoogle Scholar
  2. ⊳.
    Böhm, K. H., & Cassinelli, J. 1971 A&A, 12, 21ADSGoogle Scholar
  3. ⊳.
    Pedersen, B. B., VandenBerg, D.A., & Irwin, A.W. 1990, ApJ, 352, 279ADSCrossRefGoogle Scholar
  4. ⊳.
    Stothers, R. B., & Chin, C-W. 1997, ApJ, 478, L103.ADSCrossRefGoogle Scholar
  5. ⊳.
    Lighthill, M. J. 1952, PRSocL, A221, 564MathSciNetGoogle Scholar
  6. ⊳.
    Lighthill, M. J. Ibid. 1954, PRSocL, A222, 1Google Scholar
  7. ⊳.
    Proudman, J. 1952, PRSocL, A214, 119.MathSciNetGoogle Scholar
  8. ⊳.
    Canuto, V. M., & Mazzitelli, I. 1991, ApJ, 370, 295ADSCrossRefGoogle Scholar
  9. ⊳.
    Canuto, V. M., & Dubovikov, M.S. 1998, ApJ, 493, 827ADSCrossRefGoogle Scholar
  10. ⊳.
    Kupka, F. 1999, ApJ, 526, L45.ADSCrossRefGoogle Scholar
  11. ⊳.
    Maeder, A. 1975, A&A, 40, 303ADSGoogle Scholar
  12. ⊳.
    Maeder, A. Ibid. 1975, A&A, 43, 61Google Scholar
  13. ⊳.
    Maeder, A. Ibid. 1976, A&A, 47, 389Google Scholar
  14. ⊳.
    Maeder, A. Ibid. 1982, A&A, 105, 149Google Scholar
  15. ⊳.
    Maeder, A., & Bouvier, P. 1976, A&A, 50, 309ADSGoogle Scholar
  16. ⊳.
    Maeder, A., & Mermilliod, J.C. 1981, A&A, 93, 136.ADSGoogle Scholar
  17. ⊳.
    Chiosi, C, & Maeder, A. 1986, ARA&A, 24, 329.ADSCrossRefGoogle Scholar
  18. ⊳.
    Maeder, A. 1990, A&AS, 84, 139.ADSGoogle Scholar
  19. ⊳.
    Hansen, C. J. 1978, ARA&A, 16, 15.ADSCrossRefGoogle Scholar
  20. ⊳.
    Trimble, V. 1992, PASP, 104, 1.MathSciNetADSCrossRefGoogle Scholar
  21. ⊳.
    Trimble, V., & Aschwanden, M. 1998, PASP, 111, 385.ADSCrossRefGoogle Scholar
  22. ⊳.
    Chandrasekhar, S. 1981, Hydrodynamic and Hydromagnetic Stability (New York: Dover)Google Scholar
  23. ⊳.
    Gough, D. O., Spiegel, E. A., & Toomre, J. 1975, JFlMech, 68, 695MATHGoogle Scholar
  24. ⊳.
    Latour, J., Spiegel, E. A., Toomre, J., & Zahn, J.-P. 1976, ApJ, 207, 233MathSciNetADSCrossRefGoogle Scholar
  25. ⊳.
    Toomre, J., Zahn, J.-P., Latour, J., & Spiegel, E. A. 1976, ApJ, 207, 545MathSciNetADSCrossRefGoogle Scholar
  26. ⊳.
    Latour, J., Toomre, J., & Zahn, J.-P. 1981, ApJ, 248, 1081ADSCrossRefGoogle Scholar
  27. ⊳.
    Latour, J., Toomre, J., & Zahn, J.-P. 1983, SolPhys, 82, 387ADSGoogle Scholar
  28. ⊳.
    Nordlund, A, & Stein, R. F. 1990, CompPhysC, 59, 119.ADSMATHGoogle Scholar
  29. ⊳.
    Lydon, T. J., Fox, P. A., & Sofia, S. 1992, ApJ, 397, 701ADSCrossRefGoogle Scholar
  30. ⊳.
    Lydon, T.J., Fox, P. A., & Sofia, S. Ibid. 1993, ApJ, 403, L79.Google Scholar
  31. ⊳.
    Schwarzschild, M., & Härm, R. 1958, ApJ, 128, 348.ADSCrossRefGoogle Scholar

§5.3: Hydro dynamic Calculations

  1. ⊳.
    Brummell, N. H., Clune, T. L., & Toomre, J. 2002, ApJ., 570, 825ADSCrossRefGoogle Scholar
  2. ⊳.
    Stein, R. F., & Nordlund, A. 1998, ApJ, 499, 914ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Carl J. Hansen
    • 1
  • Steven D. Kawaler
    • 2
  • Virginia Trimble
    • 3
    • 4
  1. 1.Astrophysics and Planetary SciencesUniversity of ColoradoBoulderUSA
  2. 2.Departments of Physics and AstronomyIowa State UniversityAmesUSA
  3. 3.Department of AstronomyUniversity of MarylandCollege ParkUSA
  4. 4.Department of PhysicsUniversity of California, IrvineIrvineUSA

Personalised recommendations