Realization Of Universal Quantum Cloning and of the Not Gate by Optical Parametric Amplification

  • F. Sciarrino
  • C. Sias
  • F. De Martini


An arbitrary quantum state cannot be “cloned” perfectly, that is, reproduced with “fidelity” F = 1 into M > 1 states identical to the original by any conceivable physical device. The main root of this impossibility resides in the linearity of quantum mechanics. A second “quantum impossibility” process, based on the complete positivity character of any quantum operation, forbids the realization of a universal NOT gate that is, one that flips exactly any input qubit into an orthogonal one. A detailed investigation of these results, representing the most fundamental difference between classical and quantum information, can reveal the detailed structure of the latter. We report an experimental demonstration of the process of optimal cloning of N = 1 input qubit into M = 2 output qubits by a quantum-injected optical parametric amplifier (OPA). By the same apparatus the realization of a universal NOT gate is also demonstrated. The two processes will be found to be universal and optimal, that is, the measured fidelity of both processes F < 1 will be found close to the theoretical values.


Bloch Sphere Optical Parametric Amplifier Quantum Cloning Optical Parametric Amplification Universality Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Preskill. Lecture Notes on Quantum Computation,
  2. [2]
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam, North-Holland. 1982)MATHGoogle Scholar
  3. [3]
    S. Massar and S. Popescu, Pins. Rev. Lett. 74, 1259 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [3a]
    N. Gisin and S. Popescu, Phys. Rev. Lett. 83, 432 (1999).ADSCrossRefGoogle Scholar
  5. [4]
    R. Derka, V. Buzek, and A. Ekert, Phys. Rev. Lett. 80, 1571 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [5]
    W. K. Wootters and W.K. Zurek, Nature (London) 299, 802 (1982).ADSCrossRefGoogle Scholar
  7. [6]
    N. Herbert, Found, of Phys. 12, 1171 (1982).ADSCrossRefGoogle Scholar
  8. [6a]
    L. Mandel, Nature (London), 304, 188 (1983).ADSCrossRefGoogle Scholar
  9. [7]
    N. Gisin, Phys. Lett. A. 259 (1999).Google Scholar
  10. [8]
    C. Simon, V. Buzek, and N. Gisin, Phys. Rev. Lett. 87, 170405 (2001).ADSCrossRefGoogle Scholar
  11. [9]
    V. Buzek. M. Hillery, and R. F. Werner, Phys. Rev. A 60, R2626 (1999).MathSciNetADSGoogle Scholar
  12. [10]
    A. Peres, Quantum Theory: Concepts and Methods (Dordrecht, Kluwer, 1993).MATHGoogle Scholar
  13. [11]
    A. Alber et al. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments. Springer Tracts in Modern Physics Vol. 173 (Berlin, Springer-Verlag, 2001).Google Scholar
  14. [12]
    F. De Martini, Phys. Rev. Lett. 81, 2842 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [13]
    V. Buzek and M. Hillery. Phys. Rev. A 54, 1855 (1996).MathSciNetADSGoogle Scholar
  16. [14]
    N. Gisin and S. Massar. Phys. Rev. Lett. 79, 2153 (1997)ADSCrossRefGoogle Scholar
  17. [14a]
    D. Bruss, A. Ekert, and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998).Google Scholar
  18. [15]
    R. F. Werner, Phys. Rev. A 58, 1827 (1998).ADSGoogle Scholar
  19. [16]
    C. Simon, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 84, 2993 (2000).ADSCrossRefGoogle Scholar
  20. [17]
    F. De Martini, V. Mussi, and F. Bovino, Opt. Comm. 179, 581 (2000).ADSCrossRefGoogle Scholar
  21. [181.
    F. De Martini, G. Di Giuseppe, and S. Padua, Phys. Rev. Lett. 87, 150401 (2001).CrossRefGoogle Scholar
  22. [19]
    A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, Science 296, 712–714 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • F. Sciarrino
    • 1
  • C. Sias
    • 1
  • F. De Martini
    • 1
  1. 1.Dipartimento di FisicaUniversita’ di Roma “La Sapienza ”RomeItaly

Personalised recommendations