Skip to main content

Time-Local Master Equations: Influence Functional and Cumulant Expansion

  • Chapter
Quantum Computing and Quantum Bits in Mesoscopic Systems

Abstract

The non-Markovian behavior of open quantum systems interacting with a reservoir can often be described in terms of a time-local master equation involving a time-dependent generator which is not in Lindblad form. A systematic perturbation expansion of the generator is obtained either by means of van Kampen’s method of ordered cumulants or else by use of the Feynman — Vernon influence functional technique. Both expansions are demonstrated to yield equivalent expressions for the generator in all orders of the system-reservoir coupling. Explicit formulae are derived for the second- and the fourth-order generator in terms of the influence functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, Oxford University Press, 2002).

    MATH  Google Scholar 

  2. R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118–173 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. O. Caldeira and A. J. Leggett, Physica 121A, 587–616 (1983).

    MathSciNet  ADS  Google Scholar 

  4. H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115–207 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Shibata, Y. Takahashi, and N. Hashitume, J. Stat. Phys. 17, 171–187 (1977).

    Article  ADS  Google Scholar 

  6. S. Chaturvedi and F. Shibata, Z. Phys. B 35, 297–308 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  7. N. G.van Kampen, Physica 74, 215–238 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  8. N. C. van Kampen, Physica 74, 239–247 (1974).

    Article  ADS  Google Scholar 

  9. H. P. Breuer and F. Petruccione, Phys. Rev. A 63, 032102–1(18) (2001).

    ADS  Google Scholar 

  10. H. P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 59, 1633–1643 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breuer, HP., Ma, A., Petruccione, F. (2004). Time-Local Master Equations: Influence Functional and Cumulant Expansion. In: Leggett, A.J., Ruggiero, B., Silvestrini, P. (eds) Quantum Computing and Quantum Bits in Mesoscopic Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9092-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9092-1_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4791-0

  • Online ISBN: 978-1-4419-9092-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics