Pseudomonas pp 575-608 | Cite as

Catabolism of Nitroaromatic Compounds

  • Shirley F. Nishino
  • Jim C. Spain

Abstract

Nitroaromatic compounds, though rare in nature, are versatile and favored tools of the synthetic chemist and became widely distributed in the biosphere after the advent of the industrial revolution. Compounds such as nitrobenzene (NB) consistently rank among the most commonly used industrial chemicals in the world, because it is the gateway to the production of aniline and thus to dyes, resins, inks, and rubber. Dinitrotoluene (DNT) is similarly the precursor to toluenediisocyanate which in turn is the major monomer used to manufacture polyurethane foams, elastomers, and coatings. 2,4,6-Trinitrotoluene (TNT) became the most widely used military explosive in the world shortly after the development of practical methods to manufacture substantial quantities of the explosive. Other nitroaromatic compounds have gained widespread use as pesticides and herbicides.

Keywords

Nitrite Explosive Salicylate Clostridium Nitroso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achtnich, C., Sieglen, U., Knackmuss, H.-J., and Lenke, H., 1999, Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ. Toxicol. Chem., 18:2416–2423.CrossRefGoogle Scholar
  2. 2.
    Ahmad, F. and Hughes, J.B., 2002, Reactivity of partially reduced arylhydroxylamino and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids. Environ. Sci. Technol., 36:4370–7381.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmad, F. and Hughes, J.B., 2000, Anaerobic transformation of TNT by Clostridium, p. 185–212. In J.C. Spain, IB. Hughes, and H.-J. Knackmuss (eds), Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishers, Boca Raton.Google Scholar
  4. 4.
    Ali-Sadat, S., Mohan, K.S., and Walia, S.K., 1995, A novel pathway for the biodegradation of 3-nitrotoluene in Pseudomonas putida. FEMS Microbiol. Ecol., 17:169–176.CrossRefGoogle Scholar
  5. 5.
    An, D., Gibson, D.T., and Spain, J.C., 1994, Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. J. Bacteriol., 176:7462–7467.PubMedGoogle Scholar
  6. 6.
    Aoki, K., Takenaka, S., Murakami, S., and Shinke, R., 1997, Partial purification and characterization of a bacterial dioxygenase that catalyzes the ring fission of 2-aminophenol. Microbiol. Res., 152:33–38.CrossRefGoogle Scholar
  7. 7.
    Barbieri, P., Arenghi, F.L.G., Bertoni, G., Bolognese, F., and Galli, E., 2001, Evolution of catabolic pathways and metabolic versatility in Pseudomonas stutzeri OX1. Antonie van Leeuwenhoek, 79:135–140.PubMedCrossRefGoogle Scholar
  8. 8.
    Behrend, C. and Heesche-Wagner, K., 1999, Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl. Environ. Microbiol., 65:1372–1377.PubMedGoogle Scholar
  9. 9.
    Bhushan, B., Chauhan, A., Samanta, S.K., and Jain, R.K., 2000, Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem. Biophys. Res. Comm., 274:626–630.PubMedCrossRefGoogle Scholar
  10. 10.
    Blasco, R., Moore, E., Wray, V., Pieper, D., Timmis, K., and Castillo, F., 1999, 3-Nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. J. Bacteriol., 181:149–152.PubMedGoogle Scholar
  11. 11.
    Blotevogel, K.-H. and Gorontzy, T., 2000, Microbial degradation of compounds with nitro functions. In H.-J. Rehm, G. Reed, A. Pühler, and P. Stadler (eds), Biotechnology, 2nd ed., vol. 11, pp. 273–302. Wiley-VCH, Weinheim, Germany.CrossRefGoogle Scholar
  12. 12.
    Boopathy, R. and Kulpa, CF., 1992, Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr. Microbiol., 25:235–241.PubMedCrossRefGoogle Scholar
  13. 13.
    Boyd, D.R., Sharma, N.D., and Allen, C.C.R., 2001, Aromatic dioxygenases: Molecular biocatalysis and applications. Curr. Opin. Biotechnol., 12:564–573.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruhn, C., Bayly, R.C., and Knackmuss, H.-J., 1988, The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Arch. Microbiol., 150:171–177.CrossRefGoogle Scholar
  15. 15.
    Cain, R.B., 1966, Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a flavobacterium. J. Gen. Microbiol., 42:219–235.PubMedCrossRefGoogle Scholar
  16. 16.
    Cartwright, N.J. and Cain, R.B., 1959, Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem. J., 73:305–314.PubMedGoogle Scholar
  17. 17.
    Cassidy, M.B., Lee, H., Trevors, J.T., and Zablotowicz, R.B., 1999, Chlorophenol and nitrophenol metabolism by Sphingomonas sp UG30. J. Ind. Microbiol. Biotechnol., 23:232–241.PubMedCrossRefGoogle Scholar
  18. 18.
    Cerniglia, C.E. and Somerville, C.C., 1995, Reductive metabolism of nitroaromatic and nitropolycyclic aromatic hydrocarbons. In J.C. Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 99–115. Plenum Publishing Corp., New York.Google Scholar
  19. 19.
    Chauhan, A. and Jain, R.K., 2000, Degradation of o-nitrobenzoate via anthranilic acid (o-aminobenzoate) by Arthrobacter protophormiae: A plasmid-encoded new pathway. Biochem. Biophys. Res. Comm., 267:236–244.PubMedCrossRefGoogle Scholar
  20. 20.
    Chauhan, A., Samanta, S.K., and Jain, R.K., 2000, Degradation of 4-nitrocatechol by Burkholderia cepacia: A plasmid-encoded novel pathway. J. Appl. Microbiol., 88:764–772.PubMedCrossRefGoogle Scholar
  21. 21.
    Copley, S.D., 2003, Enzymes with extra talents: Moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol., 7:265–272.PubMedCrossRefGoogle Scholar
  22. 22.
    Corbett, M.D. and Corbett, B., 1995, Bioorganic chemistry of the arylhydroxylamine and nitrosoarene functional groups. In J.C. Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 151–182. Plenum Publishing Corp., New York.Google Scholar
  23. 23.
    Crawford, R.L., 1995, Biodegradation of nitrated munition compounds and herbicides by obligately anaerobic bacteria. In J.C. Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 87–98. Plenum Publishing Corp., New York.Google Scholar
  24. 24.
    Cuffin, S.M., Lafferty, P.M., Taylor, P.N., Spain, J.C., Nishino, S.F., and Williams, K.A., 2001, Bioremediation of dinitrotoluene isomers in the unsaturated/saturated zone, abstr. Poster Session Bl, Sixth International In Situ and On-Site Bioremediation Symposium. San Diego, California.Google Scholar
  25. 25.
    Daun, G., Lenke, H., Reuss, M., and Knackmuss, H.-J., 1998, Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ. Sci. Technol., 32:1956–1963.CrossRefGoogle Scholar
  26. 26.
    Davis, J.K., He, Z., Somerville, C.C., and Spain, J.C., 1999, Genetic and biochemical comparison of 2-aminophenol-l,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: Divergent evolution of 2-aminophenol meta-cleavage pathway. Arch. Microbiol., 172:330–339.PubMedCrossRefGoogle Scholar
  27. 27.
    Davis, J.K., Paoli, G.C., He, Z., Nadeau, L.J., Somerville, C.C., and Spain, J.C., 2000, Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45. Appl Environ. Microbiol., 66:2965–2971.PubMedCrossRefGoogle Scholar
  28. 28.
    de la Cruz, F. and Davies, J., 2000, Horizontal gene transfer and the origin of species: Lessons from bacteria. Trends Microbiol., 8:128–133.PubMedCrossRefGoogle Scholar
  29. 29.
    Delgado, A., Wubbolts, M.G., Abril, M.-A., and Ramos, J.L., 1992, Nitroaromatics are substrates for the TOL plasmid upper-pathway enzymes. Appl. Environ. Microbiol., 58:415–417.PubMedGoogle Scholar
  30. 30.
    Dickel, O. and Knackmuss, H.-J., 1991, Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol., 157:76–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Duque, E., Haidour, A., Godoy, R, and Ramos, J.L., 1993, Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol., 175:2278–2283.PubMedGoogle Scholar
  32. 32.
    Ebert, S., Rieger, P.-G., and Knackmuss, H.-J., 1999, Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J. Bacteriol., 181:2669–2674.PubMedGoogle Scholar
  33. 33.
    Ecker, S., Widmann, T., Lenke, H., Dickel, O., Fischer, P., Bruhn, C., and Knackmuss, H.-J., 1992, Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP134 and JMP222. Arch. Microbiol., 158:149–154.CrossRefGoogle Scholar
  34. 34.
    Esteve-Nunez, A., Caballero, A., and Ramos, J.L., 2001, Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev., 65:335–352.PubMedCrossRefGoogle Scholar
  35. 35.
    Esteve-Nunez, A., Lucchesi, G., Philipp, B., Schink, B., and Ramos, J.L., 2000, Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J. Bacteriol., 182:1352–1355.PubMedCrossRefGoogle Scholar
  36. 36.
    Esteve-Nunez, A. and Ramos, J.L., 1998, Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ. Sci. Technol., 32:3802–3808.CrossRefGoogle Scholar
  37. 37.
    Fiorella, P.D. and Spain, J.C., 1997, Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl. Environ. Microbiol., 63:2007–2015.PubMedGoogle Scholar
  38. 38.
    French, C.E., Nickiin, S., and Bruce, N.C., 1998, Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ. Microbiol., 64:2864–2868.PubMedGoogle Scholar
  39. 39.
    Fuenmayer, S.L., Wild, M., Boyes, A.L., and Williams, P.A., 1998, A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J. Bacteriol., 180:2522–2530.Google Scholar
  40. 40.
    Gibson, D.T. and Parales, R.E., 2000, Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 11:236–243.PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson, D.T. and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons. In D.T. Gibson (ed.), Microbial Degradation of Organic Compounds, pp. 181–252. Marcel Dekker, Inc., New York.Google Scholar
  42. 42.
    Gong, P., Siciliano, S.D., Greer, C.W., Paquet, L., Hawari, J., and Sunahara, G., 1999, Effects and bioavailability of 2,4,6-trinitrotoluene in spiked and field-contaminated soils to indigenous microorganisms. Environ. Toxicol. Chem., 18:2681–2688.CrossRefGoogle Scholar
  43. 43.
    Goodall, J.L., Thomas, S.M., Spain, J.C., and Peretti, S.W., 1998, Operation of mixed-culture immobilized cell reactors for the metabolism of meta-and para-nitrobenzoate by Comamonas sp. JS46 and Comamonas sp. JS47. Biotechnol Bioeng., 59:21–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Groenewegen, P.E.J., Breeuwer, P., van Helvoort, J.M.L.M., Langenhoff, A.A.M., de Vries, F.P., and de Bont, J.A.M., 1992, Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J.Gen. Microbiol., 138:1599–1605PubMedCrossRefGoogle Scholar
  45. 45.
    Groenewegen, P.E.J. and de Bont, J.A.M., 1992, Degradation of 4-nitrobenzoate via 4-hydroxy-laminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Arch. Microbiol., 158:381–386.CrossRefGoogle Scholar
  46. 46.
    Gundersen, K. and Jensen, H.L., 1956, A soil bacterium decomposing organic nitrocompounds. Acta Agr. Scand., 6:100–114.CrossRefGoogle Scholar
  47. 47.
    Haïdour, A. and Ramos, J.L., 1996, Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ. Sci. Technol., 30:2365–2370.CrossRefGoogle Scholar
  48. 48.
    Haigler, B.E., Johnson, G.R., Suen, W.-C., and Spain, J.C., 1999, Biochemical and genetic evidence for meta-ring cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J.Bacteriol., 181:3965–3972.Google Scholar
  49. 49.
    Haigler, B.E., Nishino, S.F., and Spain, J.C., 1994, Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J. Bacteriol., 176:3433–3437.PubMedGoogle Scholar
  50. 50.
    Haigler, B.E. and Spain, J.C., 1993, Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol., 59:2239–2243.PubMedGoogle Scholar
  51. 51.
    Haigler, B.E., Suen, W.-C., and Spain, J.C., 1996, Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J. Bacteriol., 178:6019–6024.PubMedGoogle Scholar
  52. 52.
    Haigler, B.E., Wallace, W.H., and Spain, J.C., 1994, Biodegradation of 2-nitrotoluene by Pseudomonas sp. Strain JS42. Appl. Environ. Microbiol., 60:3466–3469.PubMedGoogle Scholar
  53. 53.
    Hamdi, Y.A., and Tewfik, M.S., 1970, Degradation of 3,5-dinitro-o-cresol by Rhizobium and Azotobacter spp. Soil Biol. Biochem., 2:163–166.CrossRefGoogle Scholar
  54. 54.
    Hammill, T.B. and Crawford, R.L., 1996, Degradation of 2-sec-butyl-4,6-dinitrophenol (dinoseb) by Clostridium bifermentans KMR-1. Appl. Environ. Microbiol., 62:1842–1846.PubMedGoogle Scholar
  55. 55.
    Harayama, S. and Rekik, M., 1993, Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWWO from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet., 239:81–89.PubMedGoogle Scholar
  56. 56.
    Harayama, S., Rekik, M., Ngai, K.-L., and Ornston, L.N., 1989, Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. J. Bacteriol., 171:6251–6258.PubMedGoogle Scholar
  57. 57.
    Haro, M.-A. and de Lorenzo, V., 2001, Metabolic engineering of bacteria for environmental applications: Construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotechnol., 85:103–113.PubMedCrossRefGoogle Scholar
  58. 58.
    He, Z., Davis, J.K., and Spain, J.C., 1998, Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 180:4591–4595.PubMedGoogle Scholar
  59. 59.
    He, Z., Nadeau, L.J., and Spain, J.C., 2000, Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups. Eur. J. Biochem., 267:1110–1116.PubMedCrossRefGoogle Scholar
  60. 60.
    He, Z. and Spain, J.C., 1997, Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: Removal of the amino group from 2-aminomuconic semialdehyde. Appl. Environ. Microbiol., 63:4839–4843.PubMedGoogle Scholar
  61. 61.
    He, Z. and Spain, J.C., 1998, A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 180:2502–2506.PubMedGoogle Scholar
  62. 62.
    He, Z. and Spain, J.C., 1999, Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Arch. Microbiol., 171:309–316.PubMedCrossRefGoogle Scholar
  63. 63.
    He, Z. and Spain, J.C., 2000, One-step production of picolinic acids from 2-aminophenols catalyzed by 2-aminophenol 1,6-dioxygenase. J. Ind. Microbiol. Biotechnol., 25:25–28.CrossRefGoogle Scholar
  64. 64.
    He, Z. and Spain, J.C., 2000, Reactions involved in the lower pathway for degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1. Appl. Environ. Microbiol., 66:3010–3071.PubMedCrossRefGoogle Scholar
  65. 65.
    Heiss, G., Hofrnann, K.W., Tractmann, N., Walters, D.M., Rouvière, P., and Knackmuss, H.-J., 2002, npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology, 148:799–806.PubMedGoogle Scholar
  66. 66.
    Heiss, G. and Knackmuss, H.-J., 2002, Bioelimination of trinitroaromatic compounds: Immobilization versus mineralization. Curr. Opin. Micmbiol., 5:282–287.CrossRefGoogle Scholar
  67. 67.
    Heiss, G., Trachtmann, N., Abe, Y., Takeo, M., and Knackmuss, H.-J., 2003, Homologous npdGI genes in 2,4-dinitrophenol-and 4-nitrophenol-degrading Rhodococcus spp. Appl. Environ. Microbiol., 69:2748–2754.PubMedCrossRefGoogle Scholar
  68. 68.
    Honeycutt, M.E., Jarvis, A.S., and Mcfarland, V.A., 1996, Cytotoxicity and mutagenicity of 2,4,6-trinitrotoluene and its metabolites. Ecotoxicol. Environ. Saf., 35:282–287.PubMedCrossRefGoogle Scholar
  69. 69.
    Huang, S., Lindahl, P.A., Wang, C., Bennett, G.N., Rudolph, KB., and Hughes, J.B., 2000, 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl. Environ. Microbiol., 66:1474–1478.PubMedCrossRefGoogle Scholar
  70. 70.
    Hughes, J.B., Wang, C., Yesland, K., Richardson, A., Bhadra, R., Bennett, G., and Rudolph, F., 1998, Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ. Sci. Technol., 32:494–500.CrossRefGoogle Scholar
  71. 71.
    Hughes, J.B., Wang, C.Y., Bhadra, R., Richardson, A., Bennett, G.N., and Rudolph, KB., 1998, Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino-nitrotoluene intermediates. Environ. Toxicol. Chem., 17:343–348.Google Scholar
  72. 72.
    Hughes, M.A., Baggs, M.J., al-Dulayymi, J.a., Baird, M.S., and Williams, P.A., 2002, Accumulation of 2-aminophenoxazin-3-one-7-carboxylate during growth of Pseudomonas putida TW3 on 4-nitro-substituted substrates requires 4-hydroxylaminobenzoate lyase (PnbB). Appl. Environ. Microbiol., 68:4965–4970.PubMedCrossRefGoogle Scholar
  73. 73.
    Hughes, M.A. and Williams, P.A., 2001, Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J. Bacteriol., 183:1225–1232PubMedCrossRefGoogle Scholar
  74. 74.
    Jain, R., Rivera, M.C., and Lake, J.A., 1999, Horizontal gene transfer among genomes: The complexity hypothesis. Proc. Natl. Acad. Sci., USA, 96:3801–3806.PubMedCrossRefGoogle Scholar
  75. 75.
    Jain, R.K., Dreisbach, J.H., and Spain, J.C., 1994, Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol., 60:3030–3032PubMedGoogle Scholar
  76. 76.
    James, K.D., Hughes, M.A., and Williams, P.A., 2000, Cloning and expression of ntnD, encoding a novel NAD(P)+-independent 4-nitrobenzyl alcohol dehydrogenase from Pseudomonas sp. strain TW3. J. Bacteriol., 182:3136–3141.PubMedCrossRefGoogle Scholar
  77. 77.
    James, K.D. and Williams, P.A., 1998, ntn Genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3. J. Bacteriol., 180:2043–2049.PubMedGoogle Scholar
  78. 78.
    Jensen, H.L. and Lautrup-Larsen, G., 1967, Microorganisms that decompose nitro-aromatic compounds, with special reference to dinitro-ortho-cresol. Acta Agr. Scand., 17:115–126.CrossRefGoogle Scholar
  79. 79.
    Jerger, D.E. and Woodhull, P., 2000, Applications and costs for biological treatment of explosive-contaminated soils in the United States. In J.C. Spain, J.B. Hughes, and H.-J. Knackmuss (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 395–423. Lewis Publishers, Boca Raton.Google Scholar
  80. 80.
    Johnson, G.R., Jain, R.K., and Spain, J.C., 2000, Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: An extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Arch. Microbiol., 173:86–90.PubMedCrossRefGoogle Scholar
  81. 81.
    Johnson, G.R., Jain, R.K., and Spain, J.C., 2002, Origins of the 2,4-dinitrotoluene pathway. J. Bacteriol., 184:4219–4232.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnson, G.R. and Spain, J.C., 2003, Evolution of catabolic pathways for synthetic compounds: Bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl. Microbiol. Biotechnol., 62:110–123.PubMedCrossRefGoogle Scholar
  83. 83.
    Kadiyala, V., Nadeau, L.J., and Spain, J.C., 2003, Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl. Environ. Microbiol., 69:6520–6526.PubMedCrossRefGoogle Scholar
  84. 84.
    Kadiyala, V., Smets, B.E, Chandran, K., and Spain, J.C., 1998, High affinity p-nitrophenol oxidation by Bacillus sphaericus JS905. FEMS Microbiol. Lett., 166:115–120.CrossRefGoogle Scholar
  85. 85.
    Kadiyala, V. and Spain, J.C., 1998, A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ. Microbiol., 64:2479–2484.PubMedGoogle Scholar
  86. 86.
    Katsivela, E., Wray, V., Pieper, D.H., and Wittich, R.-M., 1999, Initial reactions in the biodegradation of l-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl. Environ. Microbiol., 65:1405–1412.PubMedGoogle Scholar
  87. 87.
    Kieboom, J., Van den Brink, H., Frankena, J., and de Bont, J.A.M., 2001, Production of 3-nitrocatechol by oxygenase-containing bacteria: Optimization of the nitrobenzene biotransformation by Nocardia S3. Appl. Microbiol. Biotechnol., 55:290–295.PubMedCrossRefGoogle Scholar
  88. 88.
    Koder, R.L., Haynes, CA., Rodgers, M.E., Rodgers, D.W., and Miller, A.-E, 2002, Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry, 41:14197–14205.PubMedCrossRefGoogle Scholar
  89. 89.
    Lan, R. and Reeves, PR., 1996, Gene transfer is a major factor in bacterial evolution. Mol. Biol. Evol., 13:47–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Lendenmann, U. and Spain, J.C., 1996, 2-Aminophenol 1,6-dioxygenase: A novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 178:6227–6232.PubMedGoogle Scholar
  91. 91.
    Lenke, H., Achtnich, C., and Knackmuss, H.-X, 2000, Perspectives of bioelimination of polynitroaromatic compounds. In XC. Spain, XB. Hughes, and H.-X Knackmuss (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 91–126. Lewis Publishers, Boca Raton.Google Scholar
  92. 92.
    Lenke, H. and Knackmuss, H.-X, 1992, Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl. Environ. Microbiol., 58:2933–2937.PubMedGoogle Scholar
  93. 93.
    Lenke, H. and Knackmuss, H.-X, 1996, Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ. Microbiol., 62:784–790.PubMedGoogle Scholar
  94. 94.
    Lenke, H., Pieper, D.H., Bruhn, C., and Knackmuss, H.-X, 1992, Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl. Environ. Microbiol., 58:2928–2932.PubMedGoogle Scholar
  95. 95.
    Lessner, D.J., Johnson, G.R., Parales, R.E., Spain, XC., and Gibson, D.T., 2002, Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol., 68:634–641.PubMedCrossRefGoogle Scholar
  96. 96.
    Lessner, D.J., Parales, R., Narayan, S., and Gibson, D.T., 2003, Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. J. Bacteriol., 185:3895–3904.PubMedCrossRefGoogle Scholar
  97. 97.
    Leung, K.T., Campbell, S., Gan, Y., White, D.C., Lee, H., and Trevors, J.T., 1999, The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol. Lett., 173:247–253.PubMedCrossRefGoogle Scholar
  98. 98.
    Lorenz, M.G. and Wackernagel, W., 1990, Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Appl Microbiol., 154:380–385.Google Scholar
  99. 99.
    Mason, R.P. and Josephy, P.D., 1985, Free radical mechanism of nitroreductase. In D.E. Rickert (ed.), Toxicity of Nitroaromatic Compounds, pp. 121–140. Hemisphere Publishing Corporation, Washington, D. C.Google Scholar
  100. 100.
    Meulenberg, R. and de Bont, J.A.M., 1995, Microbial production of catechols from nitroaromatic compounds. In J. C. Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 37–52. Plenum Publishing Corp., New York.Google Scholar
  101. 101.
    Meulenberg, R., Pepi, M., and de Bont, XA.M., 1996, Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation, 7:303–311.PubMedCrossRefGoogle Scholar
  102. 102.
    Michán, C., Delgado, A., Haïidour, A., Lucchesi, G., and Ramos, J.L., 1997, In vivo construction of a hybrid pathway for metabolism of 4-nitrotoluene in Pseudomonas fluorescens. J. Bacteriol., 63:3036–3038.Google Scholar
  103. 103.
    Mironov, A.D., Krest’yaninov, V.Y., Korzhenevich, VI., Evtushenko, I.Y., and Barkovskii, A.L., 1992, Degradation of 2-nitrobenzoic acid and other aromatic compounds by a Pseudomonas pseudoalcaligenes strain. Appl. Biochem. Microbiol., 27:433–438.Google Scholar
  104. 104.
    Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H., and Lau, P.C.K., 2003, Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol., 69:1564–1572.PubMedCrossRefGoogle Scholar
  105. 105.
    Nadeau, L.J., He, Z., and Spain, J.C., 2000, Production of 2-amino-5-phenoxyphenol from 4-nitrobiphenyl ether using nitrobenzene nitroreductase and hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45. J. Ind. Microbiol. Biotechnol., 24:301–305.CrossRefGoogle Scholar
  106. 106.
    Nadeau, L.J., He, Z., and Spain, J.C., 2003, Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Appl. Environ. Microbiol., 69:2786–2793.PubMedCrossRefGoogle Scholar
  107. 107.
    Nadeau, L.J. and Spain, J.C., 1995, Bacterial degradation of m-nitrobenzoic acid. Appl. Environ. Microbiol., 61:840–843.PubMedGoogle Scholar
  108. 108.
    Nishino, S.F., Paoli, G., and Spain, J.C., 2000, Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl. Environ. Microbiol., 66:2139–2147.PubMedCrossRefGoogle Scholar
  109. 109.
    Nishino, S.F. and Spain, J.C., 1993, Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol. Environ. Sci. Technol., 27:489–494.CrossRefGoogle Scholar
  110. 110.
    Nishino, S.F. and Spain, J.C., 1993, Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol., 59:2520–2525.PubMedGoogle Scholar
  111. 111.
    Nishino, S.F. and Spain, J.C., 1995, Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Appl. Environ. Microbiol., 61:2308–2313.PubMedGoogle Scholar
  112. 112.
    Nishino, S.F., Spain, J.C., Lenke, H., and Knackmuss, H.-J., 1999, Mineralization of 2,4-and 2,6-dinitrotoluene in soil slurries. Environ. Sci. Technol., 33:1060–1064.CrossRefGoogle Scholar
  113. 113.
    Padda, R.S., Wang, C.Y., Hughes, J.B., and Bennett, G.N., 2000, Mutagenicity of trinitrotoluene and metabolites formed during anaerobic degradation by Clostridium acetobutylicum ATCC 824. Environ. Toxicol. Chem., 19:2871–2875.Google Scholar
  114. 114.
    Pak, J.W., Knoke, K.L., Noguera, D.R., Fox, B.G., and Chambliss, G.H., 2000, Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl. Environ. Microbiol., 66:4742–4750.PubMedCrossRefGoogle Scholar
  115. 115.
    Parales, J.V, Kumar, A., Parales, R.E., and Gibson, D.T., 1996, Cloning and sequencing of the genes encoding 2-nitrotoluene dioxygenase from Pseudomonas sp. JS42. Gene., 181:57–61.PubMedCrossRefGoogle Scholar
  116. 116.
    Parales, J.V, Parales, R.E., Resnick, S.M., and Gibson, D.T., 1998, Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the a subunit of the oxygenase component. J. Bacteriol., 180:1194–1199.PubMedGoogle Scholar
  117. 117.
    Parales, R.E., 2000, Molecular biology of nitroarene degradation. In J.C. Spain, J. B. Hughes, and H.-J. Knackmuss (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 63–89. Lewis Publishers, Boca Raton.Google Scholar
  118. 118.
    Parales, R.E., Emig, M.D., Lynch, N.A., and Gibson, D.T., 1998, Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J. Bacteriol., 180:2337–2344.PubMedGoogle Scholar
  119. 119.
    Parales, R.E., Ontl, T.A., and Gibson, D.T., 1997, Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp JS765. J. Ind. Microbiol. Biotechnol., 19:385–391.PubMedCrossRefGoogle Scholar
  120. 119a.
    Parales, R.E. and Resnick, S.M. In press. Aromatic hydrocarbon dioxygenases. In: Soil Biology, vol 2, Biodegradation and Bioremediation, A.J. Singh and O.P. Ward, (eds.) Springer-Verlag, Germany.Google Scholar
  121. 120.
    Park, H.-S. and Kim, H.-S., 2000, Identification and characterization of the nitrobenzene catabolic plasmids pNBl and pNB2 in Pseudomonas putida HS 12. J. Bacteriol., 182:573–580.PubMedCrossRefGoogle Scholar
  122. 121.
    Park, H.-S. and Kim, H.-S., 2001, Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J. Bacteriol., 183:5074–5081.PubMedCrossRefGoogle Scholar
  123. 122.
    Park, H.-S., Lim, S.-J., Chang, Y.K., Livingston, A.G., and Kim, H.-S., 1999, Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl. Environ. Microbiol., 65:1083–1091.PubMedGoogle Scholar
  124. 123.
    Peres, CM., Naveau, H., and Agathos, S.N., 1999, Cross induction of 4-nitrobenzoate and 4-aminobenzoate degradation by Burkholderia cepacia strain PB4. In R. Fass, Y. Flashner, and S. Reuveny (eds), Novel Approaches for Bioremediation of Organic Pollution, pp. 71–81. Plenum Publishers, New York.CrossRefGoogle Scholar
  125. 124.
    Peres, CM., Russ, R., Lenke, H., and Agathos, S.N., 2001, Biodegradation of 4-nitrobenzoate, 4-aminobenzoate and their mixtures: New strains, unusual metabolites and insights into pathway regulation. FEMS Microbiol. Ecol., 37:151–159.CrossRefGoogle Scholar
  126. 125.
    Peres, CM., Van Aken, B., Naveau, H., and Agathos, S.N., 1999, Continuous degradation of mixtures of 4-nitrobenzoate and 4-aminobenzoate by immobilized cells of Burkholderia cepacia strain PB4. Appl. Microbiol. Biotechnol., 52:440–445.PubMedCrossRefGoogle Scholar
  127. 126.
    Prakash, D., Chauhan, A., and Jain, R.K., 1996, Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem. Biophys. Res. Comm., 224:375–381.PubMedCrossRefGoogle Scholar
  128. 127.
    Preuss, A., Fimpel, J., and Diekert, G., 1993, Anaerobic transformation of 2,4,6-trinitro-toluene (TNT). Arch. Microbiol., 159:345–353.PubMedCrossRefGoogle Scholar
  129. 128.
    Preuss, A. and Rieger, P.-G., 1995, Anaerobic transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. In J. C. Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 69–85. Plenum Publishing Corp., New York.Google Scholar
  130. 129.
    Ramanathan, M.P. and Lalithakumari, D., 1999, Complete mineralization of methyl-parathion by Pseudomonas sp. A3. Appl. Biochem. Biotechnol., 80:1–12.PubMedCrossRefGoogle Scholar
  131. 130.
    Rani, L. and Lalithakumari, D., 1994, Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol., 40:1000–1006.PubMedCrossRefGoogle Scholar
  132. 131.
    Rhys-Williams, W., Taylor, S.C., and Williams, P.A., 1993, A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol., 139:1967–1972.PubMedCrossRefGoogle Scholar
  133. 132.
    Rieger, P.-G. and Knackmuss, H.-J., 1995, Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In J. C Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 1–18. Plenum Publishing Corp., New York.Google Scholar
  134. 133.
    Rieger, P.-G., Sinnwell, V., Preuß, A., Francke, W., and Knackmuss, H.-J., 1999, Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J. Bacteriol., 181:1189–1195.PubMedGoogle Scholar
  135. 134.
    Samanta, S.K., Bhushan, B., Chauhan, A., and Jain, R.K., 2000, Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem. Biophys. Res. Comm., 269:117–123.PubMedCrossRefGoogle Scholar
  136. 135.
    Schackmann, A. and Müller, R., 1991, Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol., 34:809–813.CrossRefGoogle Scholar
  137. 136.
    Schäfer, A., Harms, H., and Zehnder, A.J.B., 1996, Biodegradation of 4-nitroanisole by two Rhodococcus spp. Biodegradation, 7:249–255.PubMedCrossRefGoogle Scholar
  138. 137.
    Schenzle, A., Lenke, H., Fischer, P., Williams, P.A., and Knackmuss, H.-J., 1997, Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Appl. Environ. Microbiol., 63:1421–1427.PubMedGoogle Scholar
  139. 138.
    Schenzle, A., Lenke, H., Spain, J.C., and Knackmuss, H.-J., 1999, 3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J.Bacteriol., 181:1444–1450.PubMedGoogle Scholar
  140. 139.
    Schenzle, A., Lenke, H., Spain, J.C., and Knackmuss, H.-J., 1999, Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl. Environ. Microbiol., 65:2317–2323.PubMedGoogle Scholar
  141. 140.
    Siciliano, S.D., Gong, P., Sunahara, G.I., and Greer, C.W., 2000, Assessment of 2,4,6-trinitrotoluene toxicity in field soils by pollution-induced community tolerance, denaturing gradient gel electrophoresis, and seed germination assay. Environ. Toxicol. Chem., 19:2154–2160.CrossRefGoogle Scholar
  142. 141.
    Somerville, C.C., Nishino, S.F., and Spain, J.C., 1995, Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 177:3837–3842.PubMedGoogle Scholar
  143. 142.
    Spain, J.C. (ed.), 1995, Biodegradation of Nitroaromatic Compounds. Plenum Publishing Corp., New York.Google Scholar
  144. 143.
    Spain, J.C., 1995, Biodegradation of nitroaromatic compounds. Ann. Rev. Microbiol., 49:523–555.CrossRefGoogle Scholar
  145. 144.
    Spain, J.C., 1995, Bacterial degradation of nitroaromatic compounds under aerobic conditions. In J. C Spain (ed.), Biodegradation of Nitroaromatic Compounds, pp. 19–35. Plenum Publishing Corp., New York.Google Scholar
  146. 145.
    Spain, J.C. and Gibson, D.T., 1991, Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol., 57:812–819.PubMedGoogle Scholar
  147. 146.
    Spain, J.C., Hughes, J.B., and Knackmuss, H.-J. (eds), 2000, Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishers, Boca Raton.Google Scholar
  148. 147.
    Spain, J.C., Wyss, O., and Gibson, D.T., 1979, Enzymatic oxidation of p-nitrophenol. Biochem. Biophys. Res. Comm., 88:634–641.PubMedCrossRefGoogle Scholar
  149. 148.
    Spanggord, R.J., Spain, J.C., Nishino, S.F., and Mortelmans, K.E., 1991, Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol., 57:3200–3205.PubMedGoogle Scholar
  150. 149.
    Spiess, T., Desiere, F., Fischer, P., Spain, J.C., Knackmuss, H.-J., and Lenke, H., 1998, A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl. Environ. Microbiol., 64:446–452.PubMedGoogle Scholar
  151. 150.
    Suen, W.-C., Haigler, B.E., and Spain, J.C., 1996, 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: Similarity to naphthalene dioxygenase. J. Bacteriol., 178:4926–4934.PubMedGoogle Scholar
  152. 151.
    Suen, W.-C. and Spain, J.C., 1993, Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. J. Bacteriol., 175:1831–1837.PubMedGoogle Scholar
  153. 152.
    Takenaka, S., Murakami, S., Kim, Y.-J., and Aoki, K., 2000, Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch. Microbiol., 174:265–272.PubMedCrossRefGoogle Scholar
  154. 153.
    Takenaka, S., Murakami, S., Shinke, R., and Aoki, K., 1998, Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: Modified meta-cleavage pathway. Arch. Microbiol., 170:132–137.PubMedCrossRefGoogle Scholar
  155. 154.
    Takenaka, S., Murakami, S., Shinke, R., Hatakeyama, K., Yukawa, H., and Aoki, K., 1997, Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol. Chem., 272:14727–14732.PubMedCrossRefGoogle Scholar
  156. 155.
    Tewfik, M.S. and Evans, W.C., 1966, The metabolism of 3,5-dinitro-o-cresol (DNOC) by soil microorganisms. Biochem. J., 99:31–32.Google Scholar
  157. 156.
    Van Aken, B. and Agathos, S.N., 2001, Biodegradation of nitro-substituted explosives by white-rot fungi: A mechanistic approach. Adv. Appl. Microbiol., 48:1–77.PubMedCrossRefGoogle Scholar
  158. 157.
    van der Meer, J.R., de Vos, W.M., Harayama, S., and Zehnder, A.J.B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev., 56:677–694.PubMedGoogle Scholar
  159. 158.
    Vorbeck, C., Lenke, H., Fischer, P., and Knackmuss, H.-X, 1994, Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J.Bacteriol., 176:932–934.PubMedGoogle Scholar
  160. 159.
    Vorbeck, C., Lenke, H., Fischer, P., Spain, J.C., and Knackmuss, H.-X, 1998, Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ. Microbiol., 64:246–252.PubMedGoogle Scholar
  161. 160.
    Wang, J., Zhou, J.-T., Zhang, J.-S., Zhang, A.-L., and Lu, H., 2001, Aerobic degradation of nitrobenzene by Pseudomonas sp. JX165 and its intact cells. China Environ. Sci., 21:144–147.Google Scholar
  162. 161.
    Watrous, M.M., Clark, S., Kutty, R., Huang, S., Rudolph, F.B., Hughes, J.B., and Bennett, G.N., 2003, 2,4,6-Trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl Environ. Microbiol., 69:1542–1547PubMedCrossRefGoogle Scholar
  163. 162.
    Williams, P.A. and Sayers, J.R., 1994, The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation, 5:195–217.PubMedCrossRefGoogle Scholar
  164. 163.
    Won, W.D., Heckly, R.J., Glover, D.J., and Hoffsommer, J.C., 1974, Metabolic disposition of 2,4,6-trinitrotoluene. Appl Microbiol., 27:513–516.PubMedGoogle Scholar
  165. 164.
    Wright, B.E., 2000, A biochemical mechanism for nonrandom mutations and evolution. J.Bacteriol., 182:2993–3001.PubMedCrossRefGoogle Scholar
  166. 165.
    Yabannavar, A.V and Zylstra, G.J., 1995, Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettiiYH105. Appl Environ. Microbiol., 61:4284–4290.PubMedGoogle Scholar
  167. 166.
    Zablotowicz, R.M., Leung, K.T., Alber, T., Cassidy, M.B., Trevors, XT, Lee, H., Veldhuis, L., and Hall, J.C., 1999, Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Can. J. Microbiol., 45:840–848.PubMedGoogle Scholar
  168. 167.
    Zeyer, X and Kearney, P.C., 1984, Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonasputida. J.Agric. Food Chem., 32:238–242.CrossRefGoogle Scholar
  169. 168.
    Zeyer, J. and Kocher, H.P., 1988, Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J. Bacteriol., 170:1789–1794.PubMedGoogle Scholar
  170. 169.
    Zeyer, X, Kocher, H.P., and Timmis, K.N., 1986, Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ. Microbiol., 52:334–339.PubMedGoogle Scholar
  171. 170.
    Zhao, J.-S., Singh, A., Huang, X.-D, and Ward, O.P., 2000, Biotransformation of hydroxyl-aminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol. Appl Environ. Microbiol., 66:2336–2342.PubMedCrossRefGoogle Scholar
  172. 171.
    Zhao, J.-S. and Ward, O.P., 2001, Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions. Appl Environ. Microbiol., 67:1388–1415.PubMedCrossRefGoogle Scholar
  173. 172.
    Zhou, N.-Y., Al-Dulayymi, X, Baird, M.S., and Williams, P.A., 2002, Salicylate 5-hydroxylase from Ralstonia sp. strain U2: A monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J. Bacteriol., 184:1547–1555.PubMedCrossRefGoogle Scholar
  174. 173.
    Zylstra, G.X, Bang, S.-W, Newman, L.M., and Perry, L., 2000, Microbial degradation of mononitrophenols and mononitrobenzoates. In J.C. Spain, J.B. Hughes, and H.-J. Knackmuss (eds), Biodegradation of Nitroaromatic Compounds and Explosives, pp. 145–160. Lewis Publishers, Boca Raton.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Shirley F. Nishino
    • 1
  • Jim C. Spain
    • 1
  1. 1.Air Force Research LaboratoryMLQLUSA

Personalised recommendations