Skip to main content

Phages of Pseudomonas

  • Chapter
Pseudomonas

Abstract

A large number of bacteriophages have been isolated and analyzed in Pseudomonas. Many of them have been used as tools for epidemiological studies (phage typing) and for genetic analysis by transduction40. Some have been developed as molecular biological tools for Pseudomonas; for example, the D3l12 transposable phage-derived cloning system15, ϕCTX-derived integration-proficient vectors37, and the D3 phage-derived cosmid vector95. Furthermore, infections of some temperate phages have been demonstrated to confer new phenotypes to the host strains (lysogenic or phage conversion), and thus played important roles in generating the genetic and phenotypic diversity of Pseudomonas 30, 38, 64. From the clinical point of view, virulent phages have been regarded as potential therapeutic tools for Pseudomonas infections, the treatment of which are often very difficult because of their high resistance to antibiotics103, 104. Despite such importance of bacteriophages in various aspects, only limited knowledge about the biological and genetic features of Pseudomonas phages were available, though several RNA phages and filamentous phages have been extensively studied as model systems, for replication, gene regulation, morphogenesis, and structural biology of the macromolecules. However, by the recent progress in sequencing technology, it is now easy to obtain the whole genome sequence information of bacteriophages, which has considerably expanded our knowledge on the biological features of Pseudoinonas phages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann H.-W., 2000, Family Corticoviridae. In M.H.V van Regenmortel, C.M. Frauquet, and D.H.L. Bishop (eds), Virus Taxomony: Classification and Nomenclature of Virus, pp. 117–120. Academic Press, Inc. San Diego, Calif.

    Google Scholar 

  2. Al-Hendy A., Toivanen P., and Skurnik M., 1991, Expression cloning of Yersinia enterocalitica O:3 rfb gene cluster in Escherichia coil K12. Microb. Pathog., 10:47–59.

    PubMed  CAS  Google Scholar 

  3. Al-Hendy A., Toivanen P., and Skurnik M., 1992, Lipopolysaccharide O side chain of Yersinia enterocalitica O:3 is an essential virulence factor in an orally infected murine model. Infect. Immun., 60:870–875.

    PubMed  CAS  Google Scholar 

  4. Autexier C., Wragg-Legsre S., and DuBow M.S., 1991, Characterization of the Pseudomonas aeruginosa transposable phage D3112 [corrected] left-end regulatory region. Biochim. Biophys. Acta., 1088:147–150, 453.

    PubMed  CAS  Google Scholar 

  5. Bamford D.H. and Ackermann H.-W., 2000, Family Tectiviridae. In M.H.V. van Regenmortel, C.M. Frauquet, and D.H.L. Bishop (eds), Virus Taxomony: Classification and Nomenclature of Virus, pp. 111–116. Academic Press, Inc. San Diego, Calif.

    Google Scholar 

  6. Bamford J.K. and Bamford D.H., 1991, Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles. Virology, 181:348–352.

    PubMed  CAS  Google Scholar 

  7. Bertani L.E. and Six E.W., 1988, The P2-like phages and their parasite, P4 In R. Calendar (ed.), The Bacteriophages, Vol. 2, pp. 73–144. Plenum Press New York.

    Google Scholar 

  8. Bradley D.E., 1966, The fluorescent staining of bacteriophage nucleic acids. J. Gen. Microbiol., 44:383–391.

    PubMed  CAS  Google Scholar 

  9. Bradley D.E., 1972, Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J. Gen. Microbiol., 72:303–319.

    PubMed  CAS  Google Scholar 

  10. Bray D. and Robbins P.W., 1967, Mechanism of ε15 conversion studies with bacteriophage mutants. J. Mol. Biol., 30:457–475.

    PubMed  CAS  Google Scholar 

  11. Butcher S.J., Dokland T., Ojala P.M., Bamford D.H., and Fuller S.D., 1997, Intermediates in the assembly pathway of the double-stranded RNA virus ϕ6. EMBO J., 16:4477–4487.

    PubMed  CAS  Google Scholar 

  12. Calendar R., Yu S., Myung H., Barreiro V., Odegrip R., Bertani L.E. et al., 1998, The lysogenic conversion genes of coliphage P2 have unusually high AT content. In M. Syvanen and C. Kado (eds), Horizontal Gene Transfer, pp. 241–252. Chapman and Hall London.

    Google Scholar 

  13. Canchaya C., Proux C., Fournous G., Bruttin A., and Brussow H., 2003, Prophage genomics. Microbiol. Mol. Biol. Rev., 67:238–276.

    PubMed  CAS  Google Scholar 

  14. Casjens S., 2003, Prophages and bacterial genomics. Mol. Microbiol., 49:277–300.

    PubMed  CAS  Google Scholar 

  15. Darzins A. and Casadaban M.J., 1989, Mini-D3112 bacteriophage transposable elements for genetic analysis of Pseudomonas aeruginosa. J. Bacteriol., 17:3909–3916.

    Google Scholar 

  16. de Haas E., Paatero A.O., Mindich L., Bamford D.H., and Fuller S.D., 1999, A symmetry mismatch at the site of RNA packaging in the palymerase complex of dsRNA bacteriophage ϕ6. J. Mol. Biol., 294:357–372.

    PubMed  Google Scholar 

  17. Dodd I.B. and Egan J.B., 1996, The Escherichia coli retrons Ec67 and Ec86 replace DNA between the cos site and a transcription terminator of a 186-related prophage. Virology, 219:115–124.

    PubMed  CAS  Google Scholar 

  18. Duda R.L., 1998. Protein chainmail: Catenated protein in viral eapsids. Cell, 94:55–60.

    PubMed  CAS  Google Scholar 

  19. Duda R.L., Hempel J., Michel H., Shabanowitz J., Hunt D., and Hendrix R.W., 1995, Structural transitions during bacteriophage HK97 head assembly. J. Mol. Biol., 247:618–635.

    PubMed  CAS  Google Scholar 

  20. Duda R.L., Martincic K., and Hendrix R.W., 1995, Genetic basis of bacteriophage HK97 prohead assembly. J. Mol. Biol., 247:636–647.

    PubMed  CAS  Google Scholar 

  21. Espejo R.T. and Canelo E.S., 1968, Properties of bacteriophage PM2: A lipid-containing bacterial virus. Virology, 34:738–747.

    PubMed  CAS  Google Scholar 

  22. Espejo R.T. and Canelo E.S., 1968, Properties and characterization of the host bacterium of bacteriophage PM2. J. Bacteriol., 95:1887–1891.

    PubMed  CAS  Google Scholar 

  23. Espejo R.T., Canelo E.S., and Sinsheimer R.L., 1969, DNA of bacteriophage PM2: A closed circular double-stranded molecule. Proc. Natl. Acad. Sci. USA, 63:1164–1168.

    PubMed  CAS  Google Scholar 

  24. Feary T.W., Fisher E. Jr., and Fisher T.N., 1963, A small RNA containing Pseudomonas aeruginosa bacteriophage. Biochem. Biophys. Res. Commun., 10:359–369.

    PubMed  CAS  Google Scholar 

  25. Gilakjan Z.A. and Kropinski A.M., 1999, Cloning and analysis of the capsid morphogenesis genes of Pseudomonas aeruginosa bacteriophage D3: Another example of protein chain mail? J. Bacteriol., 181:7221–7227.

    PubMed  CAS  Google Scholar 

  26. Gottlieb P., Metzger S., Romantschuk M., Carton J., Strassman J., Bamford D.H., Kalkkinen N., and Mindich L., 1988, Nucleotide sequence of the middle dsRNA segment of bacteriophage ϕ6: placement of the genes of membrane-associated proteins. Virology, 163:183–190.

    PubMed  CAS  Google Scholar 

  27. Gottlieb P., Qiao X., Strassman S., Frilander M., and Mindich L., 1994, Identification of the packaging regions within the genomic RNA segments of bacteriophage ϕ6. Virology, 200:42–47.

    PubMed  CAS  Google Scholar 

  28. Haggard-Ljungquist E., Halling C., and Calendar R., 1992, DNA sequences of the tail fiber genes of bacteriophage P2: Evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J. Bacteriol., 174:1462–1477.

    PubMed  CAS  Google Scholar 

  29. Hausmann R., 1988, The T7 group. In R. Calendar (ed.), The Bacteriophages, Vol. 1. pp. 259–290. Plenum Press New York.

    Google Scholar 

  30. Hayashi T., Baba T., Matsumoto H., and Terawaki Y., 1990, Phage-conversion of cytotoxin production in Pseudomonas aeruginosa. Mol. Microbiol., 4:1703–1709.

    PubMed  CAS  Google Scholar 

  31. Hayashi T., Kamio Y., Hishinuma F., Usami Y., Titani K., and Terawaki Y., 1989, Pseudomonas aeruginosa cytotoxin: The nucleotide sequence of the gene and the mechanism of activation of the protoxin. Mol. Microbiol., 3:861–868.

    PubMed  CAS  Google Scholar 

  32. Hayashi T., Matsumoto H., Ohnishi M., and Terawaki Y., 1993, Molecular analysis of a eytotoxin-eonverting phage, ϕCTX, of Pseudomonas aeruginosa: Structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol. Microbiol., 7:657–667.

    PubMed  CAS  Google Scholar 

  33. Hayashi T., Matsumoto H., Ohnishi M., Yokota S., Shinomiya T., Kageyama M., and Terawaki Y., 1994, Cytotoxin-eonverting phages, ϕCTX and PS21, are R pyoein-related phages. FEMS Microbiol. Lett., 122:239–244.

    PubMed  CAS  Google Scholar 

  34. Hendrix R.W., Lawrence J.G., Hatfull G.F., and Casjens S., 2000, The origins and ongoing evolution of viruses. Trends Microbiol., 8:504–508.

    PubMed  CAS  Google Scholar 

  35. Hesselbach B.A. and Nakada D., 1977, “Host shutoff” function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase. J. Virol., 24:736–745.

    PubMed  CAS  Google Scholar 

  36. Hill D.F., Short N.J., Perham R.N., and Petersen G.B., 1991, DNA sequence of the filamentous bacteriophage Pf1. J. Mol. Biol., 218:349–364.

    PubMed  CAS  Google Scholar 

  37. Hoang T.T., Kutchma A.J., Becher A., and Schweizer H.P., 2000. Integration-proficient plasmids for Pseudomonas aeruginosa: Site-specific integration and use for engineering of reporter and expression strains. Plasmid, 43:59–72.

    PubMed  CAS  Google Scholar 

  38. Holloway B.W. and Cooper G.N., 1962, Lysogenic conversion in Pseudomonas aeruginosa. J. Bacteriol., 84:1324.

    Google Scholar 

  39. Holloway B.W., Eagan J.B., and Monk M., 1960, Lysogeny in Pseudomonas aeruginosa. Aust. J. Exp, Biol., 38:321–330.

    CAS  Google Scholar 

  40. Holloway B. and Krishnapillai V., 1975, Bacteriophages and bacteriocins. In P.H. Clarke, and M.H. Richmond (eds), Genetics and Biochemistry of Pseudomonas, pp. 97–132. John Wiley & Sons London.

    Google Scholar 

  41. Hoogstraten D., Qiao X., Sun Y., Hu, A., Onodera S., and Mindich L., 2000, Characterization of ϕ8, a bacteriophage containing three double-stranded RNA genomic segments and distantly related to ϕ6. Virology, 272:218–224.

    PubMed  CAS  Google Scholar 

  42. Huber K.E. and Waldor M.K., 2002, Filamentous phage integration requires the host recombinases XerC and XerD. Nature, 417:656–659.

    PubMed  CAS  Google Scholar 

  43. Ianenko A.S., Bekkarevich A.O., Gerasimov V.A., and Krylov V.N., 1988, Genetic map of the transposable phage D3112 of Pseudomonas aeruginosa. Genetika, 24:2120–2126.

    PubMed  CAS  Google Scholar 

  44. Iida T., Makino K., Nasu H., Yokoyama K., Tagomori K., Hattori A., Okuno T., Shinagawa H., and Honda T., 2002, Filamentous bacteriophages of Vibrios are integrated into the dif-like site of the host chromosome. J. Bacteriol., 184:4933–4935.

    PubMed  CAS  Google Scholar 

  45. Ito S. and Kageyama M., 1970, Relationship between pyocins and a bacteriophage in Pseudomonas aeruginosa. J. Gen. Appl. Microbiol., 16:231–240.

    CAS  Google Scholar 

  46. Juhala R.J., Ford M.E., Duda R.L., Youlton A., Hatfull G.F., and Hendrix R.W., 2000, Genomic sequences of bacteriophages HK97 and HK022: Pervasive generic mosaicism in the lambdoid bacteriophages. J. Mol. Biol., 299:27–51.

    PubMed  CAS  Google Scholar 

  47. Kageyama M., 1975, Bacteriocins and bacteriophages in Pseudomonas aeruginosa. In T. Mitsuhashi and H. Hashimoto (eds), Microbial Drug Resistance pp. 291–305. University of Tokyo Press Tokyo.

    Google Scholar 

  48. Kageyama M., Kobayashi M., Sano Y., and Masaki H., 1996, Construction and characterization of pyocin-colicin chimeric proteins. J. Bacteriol., 178:103–110.

    PubMed  CAS  Google Scholar 

  49. Kageyama M., Shinomiya T., Aihara Y., and Kobayashi M., 1979, Characterization of a bacteriophage related to R-type pyocins. J. Virol., 32:951–957.

    PubMed  CAS  Google Scholar 

  50. Kivela H.M., Kalkkinen N., and Bamford D.H., 2002, Bacteriophage PM2 has a protein capsid surrounding a spherical proteinaceous lipid core. J. Virol., 76:8169–8178.

    PubMed  CAS  Google Scholar 

  51. Kovalyova I.V. and Kropinski A.M., 2003, The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas potida—evidence for close relationship to the T7 group. Virology, 311:305–315.

    PubMed  CAS  Google Scholar 

  52. Kropinski A.M., 2000, Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J. Bacteriol., 182:6066–6074.

    PubMed  CAS  Google Scholar 

  53. Kropinski A.M. and Sibbald M.J., 1999, Transfer RNA genes and their significance to codon usage in the Pseudomonas aeruginosa lamboid bacteriophage D3. Can. J. Microbiol., 45:791–796.

    PubMed  CAS  Google Scholar 

  54. Krylov V.N., Bogush V.G., Ianenko A.S., and Kirsanov N.B., 1980, Pseudomonas aeruginosa bacteriophages with DNA structure similar to the DNA structure of Mu1 phage. II. Evidence for similarity between D3112, B3, and B39 bacteriophages: Analysis of DNA splits by restriction endonucleascs, isolation of D3112 and B3 recombinant phages. Genetika, 16:975–984.

    PubMed  CAS  Google Scholar 

  55. Krylov V.N. and Zhazykov I.Z., 1978, Pseudomonas bacteriophage ϕKZ—possible model for studying the genetic control of morphogenesis. Genetika, 14:678–685.

    PubMed  CAS  Google Scholar 

  56. Kuroda K. and Kageyama M., 1979, Biochemical properties of a new flexuous bacteriocin, pyocin Fl, produced by Pseudomonas aeraginosci. J. Biochem., 85:7–19.

    PubMed  CAS  Google Scholar 

  57. Kuroda K. and Kageyama M., 1981, Comparative study on F-type pyocins of Pseudomonos aeruginosa. J. Biochem., 89:1721–1736.

    PubMed  CAS  Google Scholar 

  58. Kuroda K. and Kagiyama R., 1983, Biochemical relationship among three F-type pyocins, pyocin F1, F2, and F3, and phage KF1. J. Biochem., 94:1429–1441.

    PubMed  CAS  Google Scholar 

  59. Kuroda K., Kagiyama R., and Kageyama M., 1983, Isolation and characterization of a new bacteriophage, KF1, immunologically cross-reactive with F-type pyocins. J. Biochem., 93:61–71.

    PubMed  CAS  Google Scholar 

  60. Kuzio J. and Kropinski A.M., 1983, O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. J. Bacteriol., 155:203–212.

    PubMed  CAS  Google Scholar 

  61. Lee L.F. and Boezi J.A., 1966, Characterization of bacteriophage gh-l for Pseudomonos putida. J. Bacteriol., 92:1821–1827.

    PubMed  CAS  Google Scholar 

  62. Lim F., Downey T.P., and Peabody D.S., 2001, Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem., 276:22507–22513.

    PubMed  CAS  Google Scholar 

  63. Lim F. and Peabody D.S., 2002, RNA recognition site of PP7 coat protein. Nucleic Acids Res., 30:4138–4144.

    PubMed  CAS  Google Scholar 

  64. Liu P.V., 1969, Changes in somatic antigens of Pseudomonas aeruginosa induced by bacteriophages. J. Infect. Dis., 119:237–246.

    PubMed  CAS  Google Scholar 

  65. Losick R., 1969, Isolation of a trypsin-sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ε15. J. Mol. Biol., 42:237–246.

    PubMed  CAS  Google Scholar 

  66. Losick R. and Robbins P.W., 1967, Mechanism of ε15 conversion studies with a bacterial mutant. J. Mol. Biol., 30:445–455.

    PubMed  CAS  Google Scholar 

  67. Luiten R.G., Putterman D.G., Schoenmakers J.G., Konings R.N., and Day L.A., 1985, Nucleotide sequence of the genome of Pf3, an IncP-l plasmid-specific filamentous bacteriophage of Pseudomonas aeruginosa. J. Virol., 56:268–276.

    PubMed  CAS  Google Scholar 

  68. Mannisto R.H., Grahn A.M., Bamford D.H., and Bamford J.K., 2003, Transcription of bacteriophage PM2 involves phage-encoded regulators of heterologous origin. J. Bacteriol., 185:3278–3287.

    PubMed  CAS  Google Scholar 

  69. Mannisto R.H., Kivela H.M., Paulin L., Bamford D.H., and Bamford J.K., 1999, The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated. Viralagy, 262:355–363.

    CAS  Google Scholar 

  70. Marvin D.A., Wiseman R.L., and Wachtel E.J., 1974, Filamentous bacterial viruses. XI. Molecular architecture of the class II(Pf1, Xf) virion. J. Mol. Biol., 82: 121–138.

    PubMed  CAS  Google Scholar 

  71. Matsui H., Sano Y., Ishihara H., and Shinomiya T., 1993, Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol., 175:1257–1263.

    PubMed  CAS  Google Scholar 

  72. McGraw T., Mindich L., and Frangione B., 1986, Nucleotide sequence of the small double-stranded RNA segment of bacteriophage ϕ6: Novel mechanism of natural translational control. J. Virol., 58:142–151.

    PubMed  CAS  Google Scholar 

  73. Mesyanzhinov V.V., Robben J., Grymonprez B., Kostyuchenko V.A., Bourkaltseva M.V., Sykilinda, N.N., Krylov V.N., and Volckaert G., 2002, The genome of bacteriophage ϕKZ of Pseudomonas aeruginosa. J. Mol. Biol., 317:1–19.

    PubMed  CAS  Google Scholar 

  74. Minamishima Y., Takeya K., Ohnishi Y., and Amako K., 1968, Physicochemical and biological properties of fibrous Pseudomonas bacteriophages. J. Virol., 2:208–213.

    PubMed  CAS  Google Scholar 

  75. Mindich L., 1988, Bacteriophage ϕ6: A unique virus having a lipid-containing membrane and a genome composed of three dsRNA segments. Adv. Virus Res., 35:137–176.

    PubMed  CAS  Google Scholar 

  76. Mindich L., 1999, Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage ϕ6. Microbiol Mol. Biol. Rev., 63:149–160.

    PubMed  CAS  Google Scholar 

  77. Mindich L. and Bamford D.H., 1988, Lipid-containing bacteriophages. In R. Calendar (ed.), The Bacteriophages, Vol. 2, pp. 475–520. Plenum Press New York.

    Google Scholar 

  78. Mindich L., Qiao X., Qiao J., Onodera S., Romantschuk M., and Hoogstraten D., 1999, Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J. Bacteriol., 181:4505–4508.

    PubMed  CAS  Google Scholar 

  79. Model P. and Russel M., 1988, Filamentous bacteriophages. In R. Calendar (ed.), The Bacteriophages, Vol. 2, pp. 375–456. Plenum Press New York.

    Google Scholar 

  80. Nakayama K., Kanaya S., Ohnishi M., Terawaki Y., and Hayashi T., 1999, The complete nucleotide sequence of ϕCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol., 31:399–419.

    PubMed  CAS  Google Scholar 

  81. Nakayama K., Takashima K., Ishihara H., Shinomiya T., Kageyama M., Kanaya S., Ohnishi M., Murata T., Mori H., and Hayashi T., 2000, The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol., 38:213–231.

    PubMed  CAS  Google Scholar 

  82. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos, Santos V. A., Fouts D. E., Gill S. R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R. T., Daugherty S., Kolonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee, K., Kosack D., Moestl D., Wedler H., Lauher J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K. N., Dusterhoft A., Tummler B. and Fraser C. M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    PubMed  CAS  Google Scholar 

  83. Newton G.J., Daniels C., Burrows L.L., Kropinski A.M., Clarke A.J., and Lam J.S., 2001, Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol., 39:1237–1247.

    PubMed  CAS  Google Scholar 

  84. Ohnishi M., Hayashi T., and Terawaki Y., 1998, Purification and characterization of procytotoxin of Pseudomonas aeruginosa. Dimer to monomer conversion of protoxin by proteolytic activation. J. Biol. Chem., 273:453–458.

    PubMed  CAS  Google Scholar 

  85. Ohnishi M., Hayashi T., Tomita T., and Terawaki Y., 1994, Mechanism of the cytolytic action of Pseudomonas oeruginosa cytotoxin: oligomerization of the cytotoxin on target membranes. FEDS Lett., 356:357–360.

    CAS  Google Scholar 

  86. Ohsumi M., Shinomiya T., and Kageyama M., 1980, Comparative study on R-type pyocins of Pseudomonas aeruginosa. J. Biochem., 87:1119–1125.

    PubMed  CAS  Google Scholar 

  87. Olsthoorn R.C., Garde G., Dayhuff T., Atkins J.F., and Van Duin J., 1995, Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: Kinship to coliphages and conservation of regulatory RNA structures. Virology, 206:611–625.

    PubMed  CAS  Google Scholar 

  88. Pajunen M.I., 2002, T7-like viruses (Podviridae). The springer Index of viruses, Online, http://oesys.springer.de/viruses/detabase/welcome.asp.

    Google Scholar 

  89. Pajunen M.I., Elizondo M.R., Skurnik M., Kieleczawa J., and Molineux I.J., 2002, Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol., 319:1115–1132.

    PubMed  CAS  Google Scholar 

  90. Pajunen M.I., Kiljunen S.J., Soderholm M.E., and Skurnik M., 2001, Complete genomic sequence of the lytic bacteriophage ϕYeO3–12 of Yersinia enterocolisica serotype O:3. J. Bacteriol., 183:1928–1937.

    PubMed  CAS  Google Scholar 

  91. Peeters B.P., Peters R.M., Schoenmakers J.G., and Konings R.N., 1985, Nucleotide sequence and genetic organization of the genome of the N-specific filamentous bacteriophage IKe. Comparison with the genome of the F-specific filamentous phages M13, fd and f1. J. Mol. Biol., 181:27–39.

    PubMed  CAS  Google Scholar 

  92. Poranen M.M., Daugelavicius R., Ojala P.M., Hess M.W., and Bamford D.H., 1999, A novel virus-host cell membrane interaction. Membrane voltage-dependent endocytic-like entry of bacteriophage straight ϕ6 nucleocapsid. J. Cell. Biol., 147:671–682.

    PubMed  CAS  Google Scholar 

  93. Scharmann W., 1976, Formation and isolation of leucocidin from Pseudomonas aeruginosa. J. Gen. Microbiol., 93:283–291.

    PubMed  CAS  Google Scholar 

  94. Semancik J.S., Vidaver A.K., and Van, Etten J.L., 1973, Characterization of segmented double-helical RNA from bacteriophage ϕ6. J. Mol. Biol., 78:617–625.

    PubMed  CAS  Google Scholar 

  95. Sharp R., Gertman F., Farinha M.A., and Kropinski A.M., 1990, Transduction of a plasmid containing the bacteriophage D3 cos site in Pseudomonas aeruginosa. J. Bacteriol., 172:3509–3511.

    PubMed  CAS  Google Scholar 

  96. Shinomiya T., 1984, Phenotypic mixing of pyocin R2 and bacteriophage PS17 in Pseudomonas aeruginosa PAO. J. Virol., 49:310–314.

    PubMed  CAS  Google Scholar 

  97. Shinomiya T. and Ina S., 1989, Genetic comparison of bacteriophage PS17 and Pseudomonas aruginosa R-type pyocin. J. Bacteriol., 171:2287–2292.

    PubMed  CAS  Google Scholar 

  98. Shinomiya T. and Shiga S., 1979, Bactericidal activity of the tail of Pseudomonas aeruginosa bacteriophage PS17. J. Virol., 32:958–967.

    PubMed  CAS  Google Scholar 

  99. Shinomiya T., Shiga S., and Kageyama M., 1983, Genetic determinant of pyocin R2 in Pseudosnonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. Mol. Gen. Genet., 189:375–381.

    PubMed  CAS  Google Scholar 

  100. Shinomiya T., Shiga S., Kikuchi A., and Kageyama M., 1983, Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. II. Physical characterization of pyocin R2 genes using R-prime plasmids constructed from R68.45. Mol. Gen. Genet., 189:382–389.

    PubMed  CAS  Google Scholar 

  101. Stanisich V.A., 1974, The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa. J. Gen. Microbiol., 84:332–342.

    PubMed  CAS  Google Scholar 

  102. Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F. S., Hufnagle W. O., Kowalik D. J., Lagrou M., Gather R. L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L. L., Coulter S. N., Folger K. R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G. K., Wu Z., Paulsen I. T., Reizer J., Saier M. H., Hancock R. E., Lory S. and Olson M. V., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.

    PubMed  CAS  Google Scholar 

  103. Sulakvelidze A., Atavidze Z., and Morris J.G. Jr., 2001, Bacteriophage therapy. Antimicrob. Agents Chemother., 45:649–659.

    PubMed  CAS  Google Scholar 

  104. Summers W.C., 2001, Bacteriophage therapy. Annu. Rev. Microbiol., 55:437–451.

    PubMed  CAS  Google Scholar 

  105. Takeya K. and Amako K., 1966, A rod-shaped Pseudomonas phage. Virology, 28:163–165.

    PubMed  CAS  Google Scholar 

  106. Tars K., Fridborg K., Bundule M., and Liljas L., 2000, The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-A resolution. Virology, 272:331–337.

    PubMed  CAS  Google Scholar 

  107. Tiaglov B.V., Krylov V.N., Plotnikova T.G., Minaev V.E., and Permogorov V.I., 1980, Certain physico-chemical properties of bacteriophage ϕKZ. Mol. Biol., 14:1019–1022.

    CAS  Google Scholar 

  108. Ulycznyj P.I., Salmon K.A., Douillard H., and DuBow M.S., 1995, Characterization of the Pseudomonas aeruginosa transposable bacteriophage D3112 A and B genes. Biochim. Biophys. Acta., 1264:249–253.

    PubMed  Google Scholar 

  109. Van Duin J., 1988, Single-stranded RNA bacteriophages, p. 117–167. In R. Calendar (ed), The Bacteriophages, Vol. 1. Plenum Press New York.

    Google Scholar 

  110. Vidaver A.K., Koski R.K., and Van Etten J.L., 1973, Bacteriophage ϕ6: A lipid-containing virus of Pseudomonas phaseolicola. J. Virol., 11:799–805.

    PubMed  CAS  Google Scholar 

  111. Waldor M.K. and Mekalanos J.J., 1996, Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272:1910–1914.

    PubMed  CAS  Google Scholar 

  112. Weidel W., 1958, Bacterial viruses (with particular reference to adsorption/penetration). Annu. Rev. Microbiol., 12:27–48.

    PubMed  CAS  Google Scholar 

  113. Wolfgang M.C., Kulasekara B.R., Liang X., Boyd D., Wu K., Yang Q., Miyada C.G., and Lory S., 2003, Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomanos oeruginosa. Proc. Natl. Acad. Sci. USA, 100:8484–8489.

    PubMed  CAS  Google Scholar 

  114. Woods D.E., Jeddeloh J.A., Fritz D.L., and DeShazer D., 2002, Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J. Bacteriol., 184:4003–4017.

    PubMed  CAS  Google Scholar 

  115. Yokota S., Hayashi T., and Matsumoto H., 1994, Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, ϕCTX, of Pseudomonas aeruginosa. J. Bacteriol., 176:5262–5269.

    PubMed  CAS  Google Scholar 

  116. Zinder N.D. (ed), 1975, RNA Phages. Cold Spring Harbor Laboratory Cold Spring Harbor, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hayashi, T., Nakayama, K. (2004). Phages of Pseudomonas . In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics