Skip to main content

The Genome of Pseudomonas aeruginosa

  • Chapter
Pseudomonas

Abstract

One of the remarkable properties of the common soil organism Pseudomonas aeruginosa is its ability to cause infections in a wide variety of hosts, including insects, plants, and animals 27. In humans, this organism can colonize virtually any mucosal surface and can invade tissues and blood. The infections can be of short duration and superficial, life threatening acute bacteremia, or chronic, spanning many decades, as in patients with cystic fibrosis25, 26, 36. This ability to thrive in what may be arguably the broadest distribution of ecological niches for any bacterial species was expected to be matched by a complex, highly regulated genomic repertoire. Not surprisingly, early estimates of the genomic size suggested a relatively large genome exceeding 6 Mb47. The completion of the sequencing project of the P. aeruginosa PAO1 genome in 200050 and the results from the second P. aeruginosa genome sequencing of the strain PA14 clearly demonstrate that the ecological diversity is indeed reflected in the gene content, with the coding capacity of the P. aeruginosa genomes comparable to that of a simple eukaryote Saccharomyces cerevisiea, at c. 6,000 open reading frames (ORFs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul S.F., Madden T.L., Scharfer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.J., 1997, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic. Acids. Res., 25:3389–3402. Genome of Pseudomonas aeruginosa

    Article  PubMed  CAS  Google Scholar 

  2. Arora S.K., Bangera M., Lory S., and Ramphai R., 2001, A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA, 98:9342–9347.

    Article  PubMed  CAS  Google Scholar 

  3. Arora S.K., Wolfgang M.C., Lory S., and Ramphai R. in press, Sequence polymorphism in the Glycosylation Island and flagellins of Pseudomonas aeruginosa. J. Bacteriol.

    Google Scholar 

  4. Barekzi N., Beinlich K., Hoang T.T., Pham X.Q., Karkhoff-Schweizer R., and Schweizer H.P, 2000, High-frequency flp recombinase-mediated inversions of the oriC-containing region of the Pseudomonas aeruginosa genome. J. Bacteriol., 182:7070–7074.

    Article  PubMed  CAS  Google Scholar 

  5. Buell C.R., Joardar V., Lindeberg M., Selengut J., Paulsen I.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Daugherty S., Brinkac L., Beanan M.J., Haft D.H., Nelson W.C., Davidsen T., Zafar N., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S.E., Feldblyum T.V., D’Ascenzo M., Deng W.L., Ramos A.R., Alfano J.R., Cartinhour S., Chatterjee A.K., Delaney T.P., Lazarowitz S.G., Martin G.B., Schneider D.J., Tang X., Bender C.L., White O., Fraser C.M., and Collmer A., 2003, The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 100:10181–10186.

    Article  PubMed  CAS  Google Scholar 

  6. Chen L.L. and Zhang C.T., 2003, Seven GC-rich microbial genomes adopt similar codon usage patterns regardless of their phylogenetic lineages. Biochem. Biophys. Res. Commun., 306:310–317.

    Article  PubMed  CAS  Google Scholar 

  7. Ernst R.K., D’Argenio D.A., Ichikawa J.K., Bangera M.G., Seigrade S., Burns J.L., Hiatt P., McCoy K., Brittnacher M., Kas A., Spencer D.H., Olson M.V., Ramsey B.W., Lory S., and Miller S.I. in press, Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ. Microbiol, 5:1341–9.

    Google Scholar 

  8. Greenacre M.J., 1984, Theory and Applications of Correspondence Analysis. Academic Press London.

    Google Scholar 

  9. Grocock R.J. and Sharp P.M., 2002, Synonymous codon usage in Pseudomonas aeruginosa PAOl. Gene, 289:131–139.

    Article  PubMed  CAS  Google Scholar 

  10. Gupta S.K. and Ghosh T.C, 2001, Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene, 273:63–70.

    Article  PubMed  CAS  Google Scholar 

  11. He J., Baldini R.L., Deziel E., Saucier M., Zhang Q., Liberati N.T., Lee D., Urbach J., Goodman H.M., and Rahme L.G. in press, Two pathogenicity islands harboring novel plant and animal virulence genes are carried by the broad host range pathogen Pseudomonas aeruginosa strain PA 14 but not by strain PAO1. Proc. Natl. Acad. Sci. USA.

    Google Scholar 

  12. Ikemura T., 1981, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol Biol., 151:389–409.

    Article  PubMed  CAS  Google Scholar 

  13. Karlin S., Mrazek J., and Campbell A.M., 1998, Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol., 29:1341–1355.

    Article  PubMed  CAS  Google Scholar 

  14. Kiewitz C., Larbig K., Klockgether J., Weinel C., and Tummler B., 2000, Monitoring genome evolution ex vivo: Reversible chromosomal integration of a 106 kb plasmid at two tRNA(Lys) gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology, 146(Pt 10):2365–2373.

    PubMed  CAS  Google Scholar 

  15. Kiewitz C., Weinel C., and Tummler B., 2002, Genome codon index of Pseudomonas aeruginosa: A codon index that utilizes whole genome sequence data. Genome Lett., 1:61–70.

    Article  CAS  Google Scholar 

  16. Kresse A.U., Dinesh S.D., Larbig K., and Romling U., 2003, Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol. Microbiol., 47:145–158.

    Article  PubMed  CAS  Google Scholar 

  17. Lafay B., Atherton J.C., and Sharp P.M., 2000, Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology, 146(Pt 4):851–860.

    PubMed  CAS  Google Scholar 

  18. Lafay B., Lloyd A.T., McLean M.J., Devine K.M., Sharp P.M., and Wolfe K.H., 1999, Proteome composition and codon usage in spirochaetes: Species-specific and DNA strand-specific mutational biases. Nucleic. Acids Res., 27:1642–1649.

    Article  PubMed  CAS  Google Scholar 

  19. Larbig K.D., Christmann A., Johann A., Klockgether J., Hartsch T., Merkl R., Wiehlmann L., Fritz H.J., and Tummler B., 2002, Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J. Bacteriol., 184:6665–6680.

    Article  PubMed  CAS  Google Scholar 

  20. Lawrence J.G. and Ochman H., 1997, Amelioration of bacterial genomes: Rates of change and exchange. J. Mol. Evol., 44:383–397.

    Article  PubMed  CAS  Google Scholar 

  21. Lawrence J.G. and Ochman H., 1998, Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA, 95:9413–9417.

    Article  PubMed  CAS  Google Scholar 

  22. Liang X., Pham X.Q., Olson M.V., and Lory S., 2001, Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J. Bacteriol., 183:843–853.

    Article  PubMed  CAS  Google Scholar 

  23. Lobry J.R., 1996, Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol., 13:660–665.

    Article  PubMed  CAS  Google Scholar 

  24. Lukashin A.V. and Borodovsky M., 1998, GeneMark.hmm: New solutions for gene finding. Nucleic Acids Res., 26:1107–1115.

    Article  PubMed  CAS  Google Scholar 

  25. Lyczak J.B., Cannon C.L., and Pier G.B., 2002, Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev., 15:194–222.

    Article  PubMed  CAS  Google Scholar 

  26. Lynch J.P., 3rd., 2001, Hospital-acquired pneumonia: Risk factors, microbiology, and treatment. Chest, 119:373S–384S.

    Article  PubMed  Google Scholar 

  27. Mahajan-Miklos S., Rahme L.G., and Ausubel F.M., 2000, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol., 37:981–988.

    Article  PubMed  CAS  Google Scholar 

  28. Makarova K.S., Ponomarev V.A., and Koonin E.V., 2001, Two C or not two C: Recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol., 2: RESEARCH 0033.

    Google Scholar 

  29. McLean M.J., Wolfe K.H., and Devine K.M., 1998, Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol., 47:691–696.

    Article  PubMed  CAS  Google Scholar 

  30. Moran N.A., 2002, Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108:583–586.

    Article  PubMed  CAS  Google Scholar 

  31. Muto A. and Osawa S., 1987, The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA, 84:166–169.

    Article  PubMed  CAS  Google Scholar 

  32. Nelson K.E., Weinel C., Paulsen I.T., Dodson R.J., Hilbert H., Martins dos Santos V.A., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J., Madupu, R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J.A., Timmis K.N., Dusterhoft A., Tummler B., and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    Article  PubMed  CAS  Google Scholar 

  33. Ochman H., Lawrence J.G., and Groisman E.A., 2000, Lateral gene transfer and the nature of bacterial innovation. Nature, 405:299–304.

    Article  PubMed  CAS  Google Scholar 

  34. Post L.E., Strycharz G.D., Nomura M., Lewis H., and Dennis P.P., 1979, Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc. Natl. Acad. Sci. USA, 76:1697–1701.

    Article  PubMed  CAS  Google Scholar 

  35. Rahme L.G., Tan M.W, Le L., Wong S.M., Tompkins R.G., Calderwood S.B., and Ausubel F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 94:13245–13250.

    Article  PubMed  CAS  Google Scholar 

  36. Rajan S. and Saiman L., 2002, Pulmonary infections in patients with cystic fibrosis. Semin. Respir. Infect., 17:47–56.

    Article  PubMed  Google Scholar 

  37. Ratnaningsih E., Dharmsthiti S., Krishnapillai V., Morgan A., Sinclair M., and Holloway B.W., 1990, A combined physical and genetic map of Pseudomonas aeruginosa PAO. J. Gen. Microbiol., 136(Pt 12):2351–2357.

    PubMed  CAS  Google Scholar 

  38. Raymond C.K., Sims E.H., Kas A., Spencer D.H., Kutyavin T.V, Ivey R.G., Zhou Y., Kaul R., Clendenning J.B., and Olson M.V, 2002, Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J. Bacteriol., 184:3614–3622.

    Article  PubMed  CAS  Google Scholar 

  39. Rocha E.P. and Danchin A., 2001, Ongoing evolution of strand composition in bacterial genomes. Mol. Biol Evol., 18:1789–1799.

    Article  PubMed  CAS  Google Scholar 

  40. Rocha E.P., Danchin A., and Viari A., 1999, Universal replication biases in bacteria. Mol Microbiol., 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  41. Romero H., Zavala A., and Musto H., 2000, Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res, 28:2084–2090.

    Article  PubMed  CAS  Google Scholar 

  42. Romling U., Grothues D., Bautsch W, and Tummler B., 1989, A physical genome map of Pseudomonas aeruginosa PAO. EMBO J., 8:4081–1089.

    PubMed  CAS  Google Scholar 

  43. Romling U., Schmidt K.D., and Tummler B., 1997, Large chromosomal inversions occur in Pseudomonas aeruginosa clone C strains isolated from cystic fibrosis patients. FEMS Microbiol Lett., 150:149–156.

    Article  PubMed  CAS  Google Scholar 

  44. Romling U., Schmidt K.D., and Tummler B., 1997, Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J. Mol Biol., 271:386–04.

    Article  PubMed  CAS  Google Scholar 

  45. Romling U. and Tummler B., 1991, The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map of Pseudomonas aeruginosa PAO. Nucleic Acids Res., 19:3199–3206.

    Article  PubMed  CAS  Google Scholar 

  46. Romling U., Wingender J., Muller H., and Tummler B., 1994, A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microbiol., 60:1734–1738.

    PubMed  CAS  Google Scholar 

  47. Schmidt K.D., Tummler B., and Romling U., 1996, Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J. Bacteriol., 178:85–93.

    PubMed  CAS  Google Scholar 

  48. Sharp P.M. and Li W.H., 1987, The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res., 15:1281–1295.

    Article  PubMed  CAS  Google Scholar 

  49. Spencer D.H., Kas A., Smith E.E., Raymond C.K., Sims E.H., Hastings M., Burns X.L., Kaul R., and Olson M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol, 185:1316–1325.

    Article  PubMed  CAS  Google Scholar 

  50. Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S., Hufhagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger, K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., Paulsen I.T., Reizer J., Saier M.H., Hancock R.E., Lory S., and Olson M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  51. Weinel C., Nelson K.E., and Tummler B., 2002, Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol., 4:809–818.

    Article  PubMed  CAS  Google Scholar 

  52. West S.E. and Iglewski B.H., 1988, Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res., 16:9323–9335.

    Article  PubMed  CAS  Google Scholar 

  53. Wolfgang M.C., Kulasekara B.R., Liang X., Boyd D., Wu K., Yang Q., Miyada C.G., and Lory S., 2003, Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 100:8484–8489.

    Article  PubMed  CAS  Google Scholar 

  54. Wright F., 1990. The ‘effective number of codons’ used in a gene. Gene, 87:23–29.

    Article  PubMed  CAS  Google Scholar 

  55. Yee T.W and Smith D.W., 1990, Pseudomonas chromosomal replication origins: a bacterial class distinct from Escherichia coli-type origins. Proc. Natl. Acad. Sci. USA, 87:1278–1282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kulasekara, B.R., Lory, S. (2004). The Genome of Pseudomonas aeruginosa . In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics