Pseudomonas pp 505-545 | Cite as

Pseudomonas aeruginosa Interactions with Host Cells

  • Gerald B. Pier
  • Joanna B. Goldberg

Abstract

The opportunistic nature of many different Pseudomonas aeruginosa infections leaves patients withcompromised immune systems highlysusceptible to infection. Common forms of immunesuppression leading to P. aeruginosa infectionincludeburn and traumawounds, diseasessuch as AIDS, or chemotherapeutic treatments that affect leukocyte numbers and functions. Cystic fibrosis (CF) patients develop chronic life-threatening lung infections with P. aeruginosa and can be considered to have defective innate and acquired immunity to this organism. Althoughrare, peoplewhouse extended-wear soft contact lenses are at an increasedrisk for acute ulcerative keratitis.

Keywords

Migration Tyrosine Tuberculosis Respiration Nitrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldallal N., McNaughton E.E., Manzel LJ., Richards A.M., Zabner J., Ferkol T.W., and Look D.C., 2002, Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis. Am. J Respir: Crit. CareMed., 166:1248–1256.CrossRefGoogle Scholar
  2. 2.
    Allewelt M., Coleman ET., Grout M., Priebe G.P., and Pier G.B., 2000, Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia, and systemic spread. Infect. Immun., 68:3998–4004.PubMedCrossRefGoogle Scholar
  3. 3.
    Allmond L.R., Karaea T.J., Nguyen V.N., Nguyen T., Wiener-Kronish J.P., and Sawa T., 2003, Protein binding between PcrG-Pcrv, and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system. Infect. Immun., 71:2230–2233.PubMedCrossRefGoogle Scholar
  4. 4.
    Amura C.R., Fontan P.A., Sanjuan N., and Sordelli D.O., 1994, The effect of treatment with interleukin-l and tumor necrosis factor on Pseudomonas aeruginosa lung infection in a granulocytopenic mouse model. Clin. Immunol. Immunopathol., 73:261–266.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson D.M. and Sehneewind O., 1999, Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr. Opin. Microbiol., 2: 18–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Arora S.K., Dasgupta N., Lory S., and Ramphal R., 2000, Identification of two distinct types of flagellar cap proteins, FliO, in Pseudomonas aeruginosa. Infect. Immun., 68:1474–1479.PubMedCrossRefGoogle Scholar
  7. 7.
    Arora S.K., Ritchings B.W., Almira B.C., Lory S., and Ramphal R., 1998, The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. lmmun., 66:1000–1007.Google Scholar
  8. 8.
    Azghani A.O., Baker J.W., Shetty S., Miller E.J., and Bhat G.J., 2002, Pseudomonas aeruginosa elastase stimulates ERK signaling pathway and enhances IL-8 production by alveolar epithelial cells in culture. Inflamm. Res., 51:506–510.PubMedCrossRefGoogle Scholar
  9. 9.
    Azghani A.O., Idell S., Bains M., and Hancock RE., 2002, Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb. Pathog., 33:109–114.PubMedCrossRefGoogle Scholar
  10. 10.
    Baltimore R.S., Christie C.D.C., and Smith GJ.W., 1989, Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis—Implications for the pathogenesis of progressive lung deterioration. Am. Rev. Respir Dis., 140:1650–1661.PubMedCrossRefGoogle Scholar
  11. 11.
    Barker PM., Boucher RC., and Yankaskas IR., 1995, Bioelectric properties of cultured monolayers from epithelium of distal human fetal lung. Am. J Physiol., 268:L270–L277.PubMedGoogle Scholar
  12. 12.
    Bergmann O., Scheffer J., Koller M., Schonfeld W, Erbs G., Muller EE., and Konig W., 1989, Induction of inflammatory mediators (histamine and leukotriencs) from rat peritoneal mast cells and human granulocytes by Pseudomonas aeruginosa strains from bum patients. Infect. Immun., 57:2187–2195.PubMedGoogle Scholar
  13. 13.
    Boucher R.C., 2002, An overview of the pathogenesis of cystic fibrosis lung disease. Adv. Drug Deliv: Rev., 54: 1359–1371.CrossRefGoogle Scholar
  14. 14.
    Boudreau R.T., Garduno R., and Lin T.J., 2002, Protein phosphatase 2A and protein kinase C-alpha are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells. J Biol. Chem., 277:5322–5329.PubMedCrossRefGoogle Scholar
  15. 15.
    Buommino E., Morelli E, Mctafora S., Rossano E, Perfetto B., Baroni A., and Tufano M.A., 1999, Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesiclesfujecr. Immun., 67:4794–4800.Google Scholar
  16. 16.
    Burns J.L., Gibson R.L., McNamara S., Yim D., Emerson J., Rosenfeld M., Hiatt P., McCoy K., Castile R., Smith A.L., and Ramsey R.W., 2001, Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect. Dis., 183:444–452.PubMedCrossRefGoogle Scholar
  17. 17.
    Bystrova O.V, Shashkov A.S., Kocharova N.A, Knirel Y.A., Lindner B., Zahringer O., and Pier G.B., 2002, Structural studies on the core and the a-polysaccharide repeating unit of Pseudomonas aeruginosa immunotypc 1 lipopolysaccharide. Eur. J Biochem., 269:2194–2203.PubMedCrossRefGoogle Scholar
  18. 18.
    Cacalano G., Saiman L., and Prince A., 1990 Pseudomonas aeruginosa receptor(s) on cultured cystic fibrosis epithelial cells can be exposed by P acruginosa neuraminidase. Pediatrc. Pulmonol. Suppl., 5:241.Google Scholar
  19. 19.
    Cannon C.L., Kowalski M,P., Stopak K.S., and Pier G.B., 2003, Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am. J. Respir. Cell Mol. Biol., 29:188–197.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen L.D, and Hazlett L.D., 2000, Perlecan in the basement membrane of corneal epithelium serves as a site for P aeruginosa binding. Curro Sye Res., 20:26–267.Google Scholar
  21. 21.
    Cheung D.O., Halsey K., and Speert D.P., 2000, Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa. Infect. Immun., 68:4585–4592.PubMedCrossRefGoogle Scholar
  22. 22.
    Cbroncos Z.C., Wert S.E., Livingston J.L., Hassett D.J., and Whitsett J.A., 2000, Role of cystic fibrosis transmembrane conductance regulator in pulmonary clearance of Pseudomonas aeruginosa in vivo. J Immunol., 165:3941–3950.Google Scholar
  23. 23.
    Coburn J. and Frank D.W., 1999, Macrophages and epithelial cells respond differently to the Pseudomonas aeruglnosa type III secretion system. Inject. Immun., 67:3151–3154.Google Scholar
  24. 24.
    Coleman F.T., Mueschenborn S., Meluleni G., Ray C., Carey V.J., Vargas S.O., Cannon C.L., Ausubel F.M., and Pier G.B., 2003, Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc. Natl. Acad. Sci. USA., 100:1949–1954.PubMedCrossRefGoogle Scholar
  25. 25.
    Comolli J.C., Waite L.L., Mostov K.E., and Engel J.N., 1999, Pili binding to asialo-GMI on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect. Immun., 67:3207–3214.PubMedGoogle Scholar
  26. 26.
    Cortes G., Alvarez D., Saus C., and Alberti S., 2002, Role of lung epithelial cells in defense against Klebsiella pneumoniae pneumonia. Infect. Immun., 70: 1075–1080.PubMedCrossRefGoogle Scholar
  27. 27.
    Cryz Jr. S.J., Furer E., and Gennanier R., 1983, Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect. Immun., 39:1067–1071.PubMedGoogle Scholar
  28. 28.
    Dacheux D., Toussaint B., Richard M., Brochier G., Croize J., and Attree I., 2000, Pseudomonas aerugtnosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophits. Inject. Immun., 68:2916–2924.CrossRefGoogle Scholar
  29. 29.
    Davies J., Dewar A., Bush A., Pitt T., Gruenert D., Geddes D.M., and Alton E.W., 1999, Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGMI antibody and neuraminidase inhibition. Eur. Respir. J., 13:565–570.PubMedCrossRefGoogle Scholar
  30. 30.
    de Bentzmann S., Plotkowski C., and Puchelle E., 1996, Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am. J. Respir. Crit. Care Med., 154:SI55–SI62.Google Scholar
  31. 31.
    de Bentzmann S., Roger P., Dupuit F., Bajolet-Laudinat O., Fuchey C., Plotkowski M.C., and Puchelle E., 1996, Asialo GMI is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelium. Infect. Immun., 64: 1582–1588.PubMedGoogle Scholar
  32. 32.
    de Bentzmann S., Roger P., and Puchelle E., 1996, Pseudomonas aeruginosa adherence to remodeling respiratory epithelium. Eur. Resp. J., 9:2145–2150.CrossRefGoogle Scholar
  33. 33.
    de Vries F.P., van Der Ende A., van Putten J.P., and Dankert J., 1996, Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect. Immun., 64:2998–3006.PubMedGoogle Scholar
  34. 34.
    Di Martino P., 2001, Effects of antibiotics on adherence of Pseudomonas aeruginosa and Pseudomonas fluorescens to human fibronectin. Chemotherapy, 47:344–349.PubMedCrossRefGoogle Scholar
  35. 35.
    Eidelman O., Srivastava M., Zhang J., Leighton X., Murrie J., Jozwik C., Jacobson K., Weinstein D.L., Metcalf E.L., and Pollard H.B., 2001, Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaRINFkappaB pathway. Mol. Med., 7:523–534.PubMedGoogle Scholar
  36. 36.
    Elishoov H., Or R., Strauss N., and Engelhard D., 1998, Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine (Baltimore), 77:83–101.CrossRefGoogle Scholar
  37. 37.
    Ernst R.K., Yi E.C., Guo L., Lim K.B., Burns J.L., Hackett M., and Miller S.I., 1999, Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science, 286: 1561–1565.PubMedCrossRefGoogle Scholar
  38. 38.
    Esen M., Grassme H., Riethmuller J., Riehle A, Fassbender K., and Gulbins E., 2001, Invasion of human epithelial cells by Pseudomonas aeruginosa involves src-like tyrosine kinases p60Src and p59Fyn. Infect. Immun., 69:281–287.PubMedCrossRefGoogle Scholar
  39. 39.
    Evans D., Kuo T., Kwong M., Van R., and Fleiszig S., 2002, Pseudomonas aeruginosa strains with lipopolysaccharide defects exhibit reduced intracellular viability after invasion of corneal epithelial cells. Exp. Eye Res., 75:635–643.PubMedCrossRefGoogle Scholar
  40. 40.
    Evans D.J, Frank D.W., Finck-Barbancon V., Wu C., and Fleiszig S.M., 1998, Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity. Infect. Immun., 66:1453–1459.PubMedGoogle Scholar
  41. 41.
    Evans DJ., Kuo T.C., Kwong M., Van R., and Fleiszig S.M., 2002, Mutation of csk, encoding the Ccterminal Src kinase, reduces Pseudomonas aeruginosa internalization by mammalian cells and enhances bacterial cytotoxicity. Microb. Pathog., 33:135–143.PubMedCrossRefGoogle Scholar
  42. 42.
    Evans DJ., Maltseva J.A., Wu J., and Fleiszig S.M., 2002, Pseudomonas aeruginosa internalization by corneal epithelial cells involves MEK and ERK signal transduction proteins. FEMS Microbiol. Lett., 213:73–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Feldman M., Bryan R., Rajan S., Scheffler. L., Brunnert S., Tang H., and Prince A., 1998, Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Inject. Immun., 66:43–51.Google Scholar
  44. 44.
    Fleiszig S.M., Arora S.K., Van R., and Ramphal R., 2001, FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa. plays a role in internalization by corneal epithelial cells. Inject. Immun., 69:4931–4937.CrossRefGoogle Scholar
  45. 45.
    Fleiszig S.M. and Evans D.J., 2003, Contact lens infections: Can they ever be eradicated? Eye Contact Lens 29:S67–S7l; discussion S83–S84, S192–S194.PubMedCrossRefGoogle Scholar
  46. 46.
    Fleiszig S.M., Evans D.J., Do N., Vallas V., Shin S., and Mostov K.E., 1997, Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect. Immun.,65:2861–2867.PubMedGoogle Scholar
  47. 47.
    Fleiszig S.M., Vallas V., Jun CH., Mok L., Balkovetz O.E, Roth M.G., and Mostov K.E., 1998, Susceptibility of epithelial cells to Pseudomonas aeruginosa invasion and cytotoxicity is upregulated by hepatocyte growth factor. Infect. Immun., 66:3443–3446.PubMedGoogle Scholar
  48. 48.
    Fleiszig S.M., Wiener-Kronish J.P., Miyazaki H., Vallas V., Mostov K.E., Kanada O., Sawa T., Yen T.S., and Frank D.W., 1997, Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. In[ect. Immun., 65:579–586.Google Scholar
  49. 49.
    Fleiszig S.M.J., Zaidi T.S., Fletcher E.L., Preston M.J., and Pier G.B., 1994, Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect. Immun., 62:3485–3493.PubMedGoogle Scholar
  50. 50.
    Fleiszig S.M.J., Zaidi T.S., and Pier G.B., 1995, Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro. Infect. Immun., 63:4072–4077.PubMedGoogle Scholar
  51. 51.
    Fleiszig S.M.J., Zaidi T.S., Preston MJ., Grout M., Evans D.J., and Pier G.B., 1996, Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Inject. Immun., 64:2288–2294.Google Scholar
  52. 52.
    Fleiszig S.M.J., Zaidi T.S., Ramphal R., and Pier G.B., 1994, Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus. Infect. Immun., 62:1799–1804.PubMedGoogle Scholar
  53. 53.
    Fletcher E.L., Fleiszig S.M.J.,and Brennan N.A., 1993, Lipopolysaccharide in adherence of Pseudomonas aeruginosa to the cornea and contact lenses. Invest. Ophthalmol. Vis. Sci., 34:1930–1936.PubMedGoogle Scholar
  54. 54.
    Flo T.H., Ryan L., Latz E., Takeuchi O., Monks B.G., Lien E., Halaas O., Akira S., SkjakBraek, G., Golenbock D.J., and Espevik T., 2002, Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol. Chem., 277:35489–35495.PubMedCrossRefGoogle Scholar
  55. 55.
    Fraylick J.E., Riese M.J., Vincent T.S., Barbieri J.T., and Olson J.C., 2002, ADP-ribosylation and functional effects of Pseudomonas exoenzyme S on cellular RalA. Biochemistry 41:9680–9687.PubMedCrossRefGoogle Scholar
  56. 56.
    Fu H., Coburn J., and Collier R.J., 1993, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14–3–3 protein family. Proc. NatlAcad. Sci. USA., 90:2320–2324.CrossRefGoogle Scholar
  57. 57.
    Garrity-Ryan L., Kazmierczak B., Kowal R., Comolli J., Hauser A., and Engel J.N., 2000, The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect. Immun., 68:7100–7113.PubMedCrossRefGoogle Scholar
  58. 58.
    Goehring HM., Schmidt G., Pederson K.J., Aktories K., and Barbieri J.T., 1999, The N-tenninal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. BioI. Chern., 274:36369–36372.CrossRefGoogle Scholar
  59. 59.
    Goldberg J.B. and Pier G.B., 2000, The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends Microbial., 8:514–520.CrossRefGoogle Scholar
  60. 60.
    Gonzaez-Guerrico A.M., Cafferata E.G., Radrizzani M., Marcucci E, Gruenert D., Pivetta O.H., Favaloro R.R., Laguens R., Perrone S.Y., Gallo G.C., and Santa-Coloma, T.A., 2002, Tyrosine kinase c-Src constitutes a bridge between cystic fibrosis transmembrane regulator channel failure and MUCI ovcrcxpression in cystic fibrosis. J Biol. Chem., 277:17239–17247.CrossRefGoogle Scholar
  61. 61.
    Gosselin D., Stevenson M.M., Cowley E.A, Griesenbach U., Eidelman D.H., Boule M., Tam M.E., Kent G., Skamene E., Tsui L.C., and Radzioch D., 1998, Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa. Am. J Respir. Crit. Care Med., 157:1253–1262.PubMedGoogle Scholar
  62. 62.
    Grassme H., Jendrossek V:, Riehle A., von Kurthy G., Berger J., Schwarz H., Weller M., Kolesnick R., and Gulbins E., 2003, Host defense against Pseudomonasaeruginosa requires ceramide-rich membrane rafts. Nat. Med., 9:322–330.PubMedCrossRefGoogle Scholar
  63. 63.
    Grassme H., Kirschnek S., Riethmueller J., Riehle A., von Kurthy G., Lang F., Weller M., and Gulbins E., 2000, CD95/C095 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science, 290:527–530.PubMedCrossRefGoogle Scholar
  64. 64.
    Grassme H., Kirschnek S., Riethmueller J., Riehle A, von Kurthy G., Lang F., Weller M., and Gulbins E., 2001, Role of apoptosis in Pseudomonasaeruginosa pneumonia—Response. Science, 294:U3–U5.Google Scholar
  65. 65.
    Gupta S.K., Berk R.S., Masinick S., and Hazlett L.D., 1994, Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Inject. Immun., 62:4572–4579.Google Scholar
  66. 66.
    Ha U. and Jin S., 2001, Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect. Immun., 69:4398–4406.PubMedCrossRefGoogle Scholar
  67. 67.
    Ha U.H., Wang Y., and Jin S., 2003, DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect. Immun., 71: 1590–1595.PubMedCrossRefGoogle Scholar
  68. 68.
    Hajjar A.M., Ernst R.K., Tsai J.H., Wilson C.B., and Miller S.I., 2002, Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol., 3:354–359.PubMedCrossRefGoogle Scholar
  69. 69.
    Hauser A.R. and Engel J.N., 1999, Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect. Immun., 67:5530–5537.PubMedGoogle Scholar
  70. 70.
    Hauser A.R., Fleiszig S., Kang P.J., Mostov K., and Engel J.N., 1998, Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Inject. Immun., 66:1413–1420.Google Scholar
  71. 71.
    Hauser A.R., Kang P.J., and Engel J.N., 1998, PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol. Microbial., 27:807–818.CrossRefGoogle Scholar
  72. 72.
    Hazlett L.D., Moon M.M., Singh A., Berk R.S., and Rudner X.L., 1991, Analysis of adhesion, piliation, protease production and ocular infectivity of several P aeruginosa strains. Curr. Eye. Res., 10:351–362.PubMedCrossRefGoogle Scholar
  73. 73.
    Hirakata Y., Finlay B.B., Simpson D.A., Kohno S., Kamihira S., and Speert D.P., 2000, Penetration of clinical isolates of Pseudomonas aeruginosa through MOCK epithelial cell monolayers. J Infect. Dis., 181:765–769.PubMedCrossRefGoogle Scholar
  74. 74.
    Hirakata Y., Furuya N., Matsumoto T., Tateda K., and Yamaguchi K., 1995, Influence of various immunosuppressive agents on the occurrence of endogenous bacteraemia in mice. J. Med. Microbiul., 42:181–185.CrossRefGoogle Scholar
  75. 75.
    Hirakata Y., Srikumar R., Poole K., Gotch N., Suematsu T., Kohno S., Kamihira S., Hancock R.E., and Specrt D.P., 2002, Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J. Exp. Med., 196:109–118.PubMedCrossRefGoogle Scholar
  76. 76.
    Hogan D. and Kolter R., 2002, Pseudomonas—Candida interactions: an ecological role for virulence factors. Science, 296:2229–2232.PubMedCrossRefGoogle Scholar
  77. 77.
    Hotchkiss R.S., Dunne W.M., Swanson P.E., Davis C.G., Tinsley K.W., Chang K.C., Buchman T.G., Karl I.E., Grassme H., Kirschnek S., Riethmueller I, Riehle A., von Kurthy G., Lang F., Weller M., and Gulbins E., 2001, Role of apoptosis in Pseudomonas aeruginosa pneumonia. Science, 294:1783.PubMedCrossRefGoogle Scholar
  78. 78.
    Ichikawa I.K., Norris A., Bangera M.G., Geiss G.K., van’t Wout A.B., Bumgarner R.E., and Lory S., 2000, Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl. Acad. Sci. USA., 97:9659–9664.PubMedCrossRefGoogle Scholar
  79. 79.
    Isberg R.R. and Falkow S., 1985, A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature, 317:262–264.PubMedCrossRefGoogle Scholar
  80. 80.
    Jeffery P.K. and Brain P.R., 1988, Surface morphology of human airway mucosa: normal, carcinoma or cystic fibrosis. Scan. Microsc., 2:553–560.Google Scholar
  81. 81.
    Jendrossek v., Grassme H., Mueller I., Lang F., and Gulbins E., 2001, Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activatedprotein kinases. Inject. Immun., 69:2675–2683.CrossRefGoogle Scholar
  82. 82.
    Kaufman M.R., Jia J., Zeng L., Ha U., Chow M., and Jin S., 2000, Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology, 146:2531–2541.PubMedGoogle Scholar
  83. 83.
    Kazmierczak B.I. and Engel J.N., 2002, Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RIlOA, Rac1, and Cdc42. Infect. Immun., 70:2198–2205.PubMedCrossRefGoogle Scholar
  84. 84.
    Kelly N.M., Kluftinger J.L., Pasloske B.L., Paranchych w., and Hancock R.E., 1989, Pseudomonas aeruginosa pili as ligands for nonopsonic phagocytosis by fibronectinstimulated macrophages. Infect. tmmun., 57:3841–3845.Google Scholar
  85. 85.
    Khan T.Z., Wagener J.S., Bost T., Martinez J., Accurso F.J., and Riches D.W.H., 1995, Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit.Care.Med., 151:1075–1082.PubMedGoogle Scholar
  86. 86.
    Kluftinger J.L., Kelly N.M., Jost B.H., and Hancock R.E.W., 1989, Fibronectin as an enhancer of nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages. Infect. Immun., 57:2782–2785.PubMedGoogle Scholar
  87. 87.
    Knirel Y.A., Bystrova O.V., Shashkov A.S., Lindner B., Kocharova N.A., Senchenkova S.N., Moll H., Zahringer H, Hatano K., and Pier G.B., 2001, Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa. Eur. J Biochem., 268:4708–4719.Google Scholar
  88. 88.
    Kohler T., van Delden C., Curty L.K., Hamzehpour M.M., and Pechere J.C., 2001, Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol., 183:5213–5222.PubMedCrossRefGoogle Scholar
  89. 89.
    Kohri K., Ueki I.F., Shim J.J., Burgel P.R., Oh Y.M., Tam D.C., Dao-Pick T., and Nadel J.A., 2002, Pseudomonas aeruginosa induces MUC5AC production via epidermal growth factor receptor. Eur. Respir: J, 20:1263–1270.CrossRefGoogle Scholar
  90. 90.
    Krall R, Schmidt G., Aktories K., and Barbieri IT., 2000, Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun., 68:6066–6068.PubMedCrossRefGoogle Scholar
  91. 91.
    Krivan H.C., Roberts D.D., and Ginsburg V., 1988, Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc. NatlAcad. Sci. USA., 85:6157–6161.CrossRefGoogle Scholar
  92. 92.
    Krueger WA., Lenhart EP., Neeser G., Ruckdeschel G., Schreckhase H., Eissner H.J., Forst H., Eckart I, Peter K., and Unertl K.E., 2002, Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients: A prospective, stratified, randomized, doubleblind, placebo-controlledclinical trial. Am. J Respir: Crit. CareMed., 166:1029–1037.CrossRefGoogle Scholar
  93. 93.
    Krueger W.A. and Unertl K.B., 2002, Selective decontamination of the digestive tract. Curr. Opin. Crit. Care, 8:139–144.PubMedCrossRefGoogle Scholar
  94. 94.
    Kurahashi K., Kajikawa O., Sawa T., Ohara M., Gropper M.A., Frank D.W, Martin T.R., and Wiener-Kronish J.P., 1999, Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J. Clin. Invest., 104:743–750.PubMedCrossRefGoogle Scholar
  95. 95.
    Lee A., Chow D., Halls B., Tseng w., Evans D., Fleiszig S., Chandy G., and Machen T., 1999, Airway epithelial tight junctions and binding and cytotoxicity of Pseudomonas aeruginosa. Am. J. Physiol., 277:L204–L2l7.PubMedGoogle Scholar
  96. 96.
    Lee D.J., Cox D., Li J., and Greenberg S., 2000, Racl and Cdc42 are required for phagocytosis, but not NF-kappaB-dependent gene expression, in macrophages challenged with Pseudomonas aeruginosa. J Biol. Chem., 275:141–146.PubMedCrossRefGoogle Scholar
  97. 97.
    Li J., Johnson X.D., Iazvovskaia S., Tan A., Lin A., and Hershenson M.B., 2003, Signaling intermediates required for NF-kappa B activation and IL-8 expression in CF bronchial epithelial cells. Am. J Physiol. Lung Cell Mol. Physiol., 284:L307–L315.PubMedGoogle Scholar
  98. 98.
    Li J.D., Dohrman A.F., Gallup M., Miyata S., Gum J.R., Kim Y.S., Nadel J.A., Prince A., and Basbaum C.B., 1997, Transcriptional activation of mucin by Pseudomonas aeruginasa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl Acad. Sci. U.S.A., 94:967–972.PubMedCrossRefGoogle Scholar
  99. 99.
    Li J.D., Feng W, Gallup M., Kim J.H., Gum J., Kim Y., and Basbaum C., 1998, Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc.Natl Acad. Sci. U.S.A., 95:5718–5723.PubMedCrossRefGoogle Scholar
  100. 100.
    Liang X., Pham X.Q., Olson M.V, and Lory S., 2001, Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J. Bacteriol., 183:843–853.PubMedCrossRefGoogle Scholar
  101. 101.
    Lillehoj E.P., Kim BT, and Kim K.C., 2002, Identification of Pseudomonas aeruginosa f1agellin as an adhesin for Muc1 mucin. Am. J. Physiol. Lung Cell Mol. Physiol., 282:L751–1756.PubMedGoogle Scholar
  102. 102.
    Lim B.L., Wang J.Y., Holmskov U., Hoppe H.J., and Reid K.B., 1994, Expression of the carbohydrate recognition domain of lung surfactant protein D and demonstration of its binding to lipopolysaccharides of gram-negative bacteria. Biochem. Biophys. Res. Comm., 202:1674–1680.PubMedCrossRefGoogle Scholar
  103. 103.
    Lin I.J., Garduno R., Boudreau R.I., and Issekutz A.C., 2002, Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cellderived IL-I alpha and beta. J. Immunol., 169:4522–4530.PubMedGoogle Scholar
  104. 104.
    Lin T.J., Maher L.H., Gomi K., McCurdy J.D., Garduno R., and Marshall IS., 2003, Selective early production of CCL20, or macrophage inflammatory protein 3alpha, by human mast cells in response to Pseudomonas aeruginosa. Infect. Immun., 71;365–373.PubMedCrossRefGoogle Scholar
  105. 105.
    Lo-guidice J.M., Wieruszeski J.M., Lemoine J., Verbert A., Roussel P., and Lamblin G., 1994, Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J. Biol. Chem., 269:18794–18813.PubMedGoogle Scholar
  106. 106.
    Lopez-Boado Y.S., Wilson C.L., and Parks W.C., 2001, Regulation of matrilysin expression in airway epithelial cells by Pseudomonas aeruginosa f1agellin. J. Biol. Chem., 276:41417–41423.PubMedCrossRefGoogle Scholar
  107. 107.
    Lyczak J.B., Cannon C.L, and Pier G.B., 2002, Lung infections associated with cystic fibrosis. Clin. Microbial. Rev., 15:194–222.CrossRefGoogle Scholar
  108. 108.
    Mahenthiralingam E., Campbell M.E., and Speert D.P., 1994, Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Inject. Immun., 62:596–605.Google Scholar
  109. 109.
    Mahenthiralingam E. and Speert D.P., 1995, Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum. Infect. Immun., 63:4519–4523.PubMedGoogle Scholar
  110. 110.
    Mariencheck W.L., Savov J., Dong Q., Tine MJ., and Wright J.R., 1999, Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain ofP.aeruginosa. Am.J. Physiol., 277:1777–1786.Google Scholar
  111. 111.
    McNamara N., Khong A., McKemy D., Caterina M., Boyer J., Julius D., and Basbaum, C., 2001, ATP transduces signals from ASGMl, a glycolipid that functions as a bacterial receptor. Proc. NatlAcad. Sci. USA., 98:9086–9091.CrossRefGoogle Scholar
  112. 112.
    Mori N., Oishi K., Sar B., Mukaida N., Nagatake T., Matsushima K., and Yamamoto N., 1999, Essential role of transcription factor nuclear factor-kappaS in regulation of interleukin-8 gene expression by nitrite reductase from Pseudomonas aeruginosa in respiratory epithelial cells. Infect. Immun., 67:3872–3878.PubMedGoogle Scholar
  113. 113.
    Mulvey M.A., Lopez-Boado Y.S., Wilson C.L., Roth R., Parks W.C., Heuser J., and Hultgren S.J., 1998, Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science, 282:1494–1497.PubMedCrossRefGoogle Scholar
  114. 114.
    O’Toole G.A and Kolter R., 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30:295–304.PubMedCrossRefGoogle Scholar
  115. 115.
    Oceandy D., McMorran B.J., Smith S.N., Schreiber R., Kunzelmann K., Alton E.W., Hume D.A., and Wainwright B.J., 2002, Gene complementation of airwayepithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum. Mol. Genet., 11:1059–1067.PubMedCrossRefGoogle Scholar
  116. 116.
    Otterlei M., Sundan A., Skjak-Braek G., Ryan L., Smidsrod O., and Espevik T., 1993, Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect. Immun., 61:1917–1925.PubMedGoogle Scholar
  117. 117.
    Park P.W., Pier G.B., Hinkes M.T., and Bernfield M., 2001, Exploitation of syndecan-l shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411:98–102.PubMedCrossRefGoogle Scholar
  118. 118.
    Park P.W., Pier G.B., Preston M.J., Goldberger O., Fitzgerald M.L., and Bernfield M., 2000, Syndecan-l shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol. Chem., 275:3057–3064.PubMedCrossRefGoogle Scholar
  119. 119.
    Pederson K.I, Vallis A.I, Aktories K., Frank D.W. and Barbieri IT., 1999, The aminoterminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol. Microbiol., 32:393–401.PubMedCrossRefGoogle Scholar
  120. 120.
    Perdomo J.J., Gounon P., and Sansonetti P.J., 1994, Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella jlexneri. J. Clin. Invest., 93:633–643.PubMedCrossRefGoogle Scholar
  121. 121.
    Pier G.B., Grout M., and Zaidi T.S., 1997, Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl. Acad. Sci. U.S.A., 94:12088–12093.PubMedCrossRefGoogle Scholar
  122. 122.
    Pier G.B., Grout M., Zaidi T.S., Olsen J.C., Johnson L.G., Yankaskas J.R., and Goldberg J.B., 1996, Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science, 271:64–67.PubMedCrossRefGoogle Scholar
  123. 123.
    Pier G.B., Meluleni G., and Goldberg J.B., 1995, Clearance of Pseudomonas aeruginosa from the murine gastrointestinal tract is effectively mediated by O-antigen-specific circulating antibodies. Infect. Immun., 63:2818–2825.PubMedGoogle Scholar
  124. 124.
    Pizurki L., Morris M.A, Chanson M., Solomon M., Pavirani A, Bouchardy J., and Suter S., 2000, Cystic fibrosis transmembrane conductance regulator does not affect neutrophil migration across cystic fibrosis airway epithelial monolayers. Am. J. Pathol., 156:1407–1416.PubMedCrossRefGoogle Scholar
  125. 125.
    Plotkowski M.C, Costa A.O., Morandi V., Barbosa H.S., Nader H.B., de Bentzmann S., and Puchelle E., 2001, Role of heparan sulphate proteoglycans as potential receptors for non-piliated Pseudomonas aeruginosa adherence to non-polarised airway epithelial cells. J. Med. Microbia., 50:183–190.Google Scholar
  126. 126.
    Plotkowski M.C., de Bentzmann S., Pereira S.H., Zahm J.M., Bajolet-Laudinat O., Roger P., and Puchelle E., 1999, Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am. J. Respir. Cell Mol. Biol., 20:880–890.PubMedGoogle Scholar
  127. 127.
    Plotnikova J.M., Rahme L.O., and Ausubel EM., 2000, Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol., 124:1766–1774.PubMedCrossRefGoogle Scholar
  128. 128.
    Poschet J.E., Boucher J.C., Tatterson L., Skidmore J., Van Dyke R.W., and Deretic V., 2001, Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc. Natl Acad. Sci. U.S.A., 98:13972–13977.PubMedCrossRefGoogle Scholar
  129. 129.
    Priebe G.P., Meluleni G.J., Coleman F.T., Goldberg J.B., and Pier G.B., 2003, Protection against fatal Pseudomonasaeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant. Infect. Immun., 71: 1453–1461.PubMedCrossRefGoogle Scholar
  130. 130.
    Rabin S.D., and Hauser A.R., 2003, Pseudomonas aeroginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect. Immun., 71:4144–4150.PubMedCrossRefGoogle Scholar
  131. 131.
    Rajan S., Cacalano G., Bryan R., Ratner A.J., Sontich C.U., van Heerckeren A., Davis, P., and Prince A., 2000, Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am. J. Respir. Cell Mol. Biol., 23:304–312.PubMedGoogle Scholar
  132. 132.
    Ratner A.J., Bryan R., Weber A., Nguyen S., Barnes D., Pitt A., Gelber S., Cheung A., and Prince A., 2001, Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J. Biol.Chem., 276: 19267–19275.PubMedCrossRefGoogle Scholar
  133. 133.
    Restrepo C.I., Dong Q., Savov J., Mariencheck W.I., and Wright J.R., 1999, Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am. J. Respir: Cell Mol. Bio., 21:576–585.Google Scholar
  134. 134.
    Richards M.J., Edwards J.R., Culver D.H., and Gaynes R.P., 1999, Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med., 27:887–892.PubMedCrossRefGoogle Scholar
  135. 135.
    Richards M.J, Edwards J.R., Culver D.H., and Gaynes R.P., 1999, Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics, 103:e39.PubMedCrossRefGoogle Scholar
  136. 136.
    Roy-Burman A., Savel R.H., Racine S., Swanson B.L., Revadigar N.S., Fujimoto J., Sawa T., Frank D.W., and Wiener-Kronish J.P., 2001, Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect. Dis., 183:1767–1774.PubMedCrossRefGoogle Scholar
  137. 137.
    Rucks E.A, Fraylick J.E., Brandt L.M., Vincent T.S., and Olson J.C., 2003, Cell line differences in bacterially translocated ExoS ADP-ribosyltransferase substrate specificity. Microbiology, 149:319–331.PubMedCrossRefGoogle Scholar
  138. 138.
    Rudner X.L; Zheng Z., Berk R.S., Irvin R.T., and Hazlett L.D., 1992, Corneal epithelial glycoproteins exhibit Pseudomonas aeruginosa pilus binding activity. Invest. Ophthalmol. Vis. Sci., 33:2185–2193.PubMedGoogle Scholar
  139. 139.
    Rumbaugh K.P., Griswold J.A., and Hamood A.N., 1999, Pseudomonas aeruginosa strains obtained from patients with tracheal, urinary tract and wound infection: variations in virulence factors and virulence genes. J. Hosp. Infect., 43:211–218.PubMedCrossRefGoogle Scholar
  140. 140.
    Sadovskaya I., Brisson J.R., Lam J.S., Richards J.C.; and Altman E., 1998, Structural elucidation of the lipopolysaccharide core regions ofthe wild-type strain PAOl and O-chaindeficient mutant strains AK1401 and AK1012 from Pseudomonasaeruginosa serotype O5. Eur. J Biochem., 255:673–684.PubMedCrossRefGoogle Scholar
  141. 141.
    Sadovskaya I., Brisson J.R., Thibault P., Richards J.C.; Lam J.S., and Altman E., 2000, Structural characterization of the outer core and the O-chain linkage region of lipopolysaccharide from Pseudomonas aeruginosa serotype O5. Eur. J Biochem., 267:1640–1650.PubMedCrossRefGoogle Scholar
  142. 142.
    Saiman L., Cacalano G., Gruenert D., and Prince A., 1992, Comparison of adherence of Pseudomonas aeruginosa to respiratory epithelial cells from cystic fibrosis patients and healthy subjects. Infect. Immun., 60:2808–2814.PubMedGoogle Scholar
  143. 143.
    Saiman L. and Prince A., 1993, Pseudomonas aeruginosa pili bind to asialoGMI which is increased on the surface of cystic fibrosis epithelial cells. J Clin. Invest., 92:1875–1880.PubMedCrossRefGoogle Scholar
  144. 144.
    Sato H., Frank D.W., Hillard C.J., Feix J.B., Pankhaniya R.R., Moriyama K., Finck-Barbancon, V., Buchaklian A., Lei M., Long R.M., Wiener-Kronish J., and Sawa T., 2003, The mechanism of action ofthe Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. Embo J., 22:2959–2969.PubMedCrossRefGoogle Scholar
  145. 145.
    Scharfman A., Arora S.K., Delmotte P., Van Brussel E., Mazurier J., Ramphal R., and Roussel P., 2001, Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect. Immun., 69:5243–5248.PubMedCrossRefGoogle Scholar
  146. 146.
    Scharfman A., Delmotte P., Beau J., Lamblin G., Roussel P., and Mazurier J., 2000, Sialyl-Le (x) and sulfo-sialyl-Lerx) determinants are receptors for P. aeruginosa. Glycoconj. J, 17:735–740.PubMedCrossRefGoogle Scholar
  147. 147.
    Scheid P, Kempster L., Griesenbach U., Davies J.C., Dewar A, Weber P.P., Colledge, W.H., Evans M.J., Geddes D.M., and Alton E.W., 2001, Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Eur. Respir. J., 17:27–35.PubMedCrossRefGoogle Scholar
  148. 148.
    Schrager H.M., Rheinwald J.G., and Wessels M.R., 1996, Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection. J Clin. Invest; 98:1954–1958.PubMedCrossRefGoogle Scholar
  149. 149.
    Schroeder T.H., Lee M.M., Yacono P.W., Cannon C.L., Gerceker A.A., Golan D.E., and Pier G.B., 2002, CFTR is a pattern recognition molecule that extracts Pseudomonas oeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. Proc. Natl. Acad. Sci. U.S.A., 99:6907–6912.PubMedCrossRefGoogle Scholar
  150. 150.
    Schroeder T.H., Reiniger N., Meluleni G., Grout M., Coleman F.T., and Pier G.B., 2001, Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J. Immunol., 166:7410–7418.PubMedGoogle Scholar
  151. 151.
    Schroeder T.H., Zaidi T.S., and Pier G.B., 2001, Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo GM1 on epithelial cells. Inject. Immun., 69:719–729.CrossRefGoogle Scholar
  152. 152.
    Schultz MJ., Rijneveld A.W, Florquin S., Edwards E.K., Dinarello C.A, and van der Poll, T., 2002, Role of interleukin-l in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J Physiol. Lung Cell Mol. Physiol., 282:L285–L290.PubMedGoogle Scholar
  153. 153.
    Singh A., Hazlett L., and Berk R.S., 1991, Characterization of PseudomonaI adherence to unwounded cornea. Invest. Ophthalmol. Vis. Sci., 32:2096–2104.PubMedGoogle Scholar
  154. 154.
    Smith R.S., Fedyk E.R., Springer TA., Mukaida N., Iglewski B.H., and Phipps R.P., 2001, IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J. Immunol., 167:366–374.PubMedGoogle Scholar
  155. 155.
    Smith R.S., Kelly R., Iglewski B.H., and Phipps R.P., 2002, The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J. Immunol., 169:2636–2642.PubMedGoogle Scholar
  156. 156.
    Spencer D.H., Kas A., Smith E.E., Raymond C.K., Sims E.H., Hastings M., Bums J.L. Kaul R., and Olson M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol.; 185:1316–1325.PubMedCrossRefGoogle Scholar
  157. 157.
    St. Geme III J.W. and Fa1kow S., 1991, Loss of capsule expression by Hemophilus injIuenzae type b results in enhanced adherence to and invasion of human cells. Inject. Immun., 59:1325–1333.Google Scholar
  158. 158.
    Sun J. and Barbieri J.T., 2003, Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J. Bioi. Chem., 287:32794–32800.CrossRefGoogle Scholar
  159. 159.
    Tabary O., Escotte S., Couetil J.P., Hubert. D., Dusser D., Puchelle. E., and Jacquot J., 2000. High susceptibility for cystic fibrosis human airway gland cells to produce IL-8 through the I kappa B kinase alpha pathway in response to extracellular NaCl content. J. Immunol., 164:3377–3384.PubMedGoogle Scholar
  160. 160.
    Tang. H.B., Kays. M., and Prince A., 1995, Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect. Immun., 63:1278–1285.PubMedGoogle Scholar
  161. 161.
    Tang H.B., DiMango E., Bryan R., Gambello M., Iglewski B.H., Goldberg J.B., and Prince A, 1996, Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun., 64:37–43.PubMedGoogle Scholar
  162. 162.
    Tirouvanziam R., de Bentzmann S., Hubeau C., Hinnrasky J., Jacquot J., Peault B., and Puchelle E., 2000, Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell Mol. Biol. 23:121–127.Google Scholar
  163. 163.
    Tsang. K.W.T., Rutman A., Tanaka E., Lund V., Dewar A., Cole P.J., and Wilson R., 1994, Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur. Resp. J., 7:1746–1753.CrossRefGoogle Scholar
  164. 164.
    Vallis A.J., Finck-Barbancon V, Yahr T.L., and Frank D.W, 1999, Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Inject. Immun., 67:2040–2044.Google Scholar
  165. 165.
    van Heeckeren A., Walenga R., Konstan M.W, Bonfield T., Davis P.B., and Ferkol T., 1997, Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Invest., 100:2810–2815.PubMedCrossRefGoogle Scholar
  166. 166.
    Virji M., Makepeace K., Ferguson D.J., Achtman M., and Moxon E.R., 1993, Meningococcal Opa and Ope proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol., 10:499–510.PubMedCrossRefGoogle Scholar
  167. 167.
    Walshe P., Cleary M., McConn W.R., and Walsh M., 2002, Malignant otitis extema-a high index of suspicion is still needed for diagnosis. Ir. Med. J., 95:14–16.PubMedGoogle Scholar
  168. 168.
    West S.E., Zeng L., Lee B.L., Kosorok M.R., Laxova A., Rock M.J., Splaingard M.J., and Farrel P.M., 2002. Respiratory infections with Pseudomonas aeruginosa in children with cystic fibrosis: Early detection by serology and assessment of risk factors. J.A.M.A., 287:2958–2967.PubMedCrossRefGoogle Scholar
  169. 169.
    Willcox. M.D. and Holden B.A., 2001, Contact lens related corneal infections. Biosci. Rep., 21:445–461.PubMedCrossRefGoogle Scholar
  170. 170.
    Wolfgang M.C., Kulasekara B.R., Liang X., Boyd D., Wu K., Yang Q., Miyada C.G., and Lory S., 2003, Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A., 100:8484–8489.PubMedCrossRefGoogle Scholar
  171. 171.
    Woods D.E., Straus D.C., Johanson Jr. W.G., Berry V.K., and Bass J.A., 1980, Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun., 29:1146–1151.PubMedGoogle Scholar
  172. 172.
    Woods D.E., Straus D.C., Johanson Jr. WG., and Bass J.A., 1981, Role of fibronectin in the prevention of adherence of Pseudomonas aeruginosa to buccal cells. J Infect. Dis.; 143:784–790.PubMedCrossRefGoogle Scholar
  173. 173.
    Worlitzsch D., Tartan R., Ulrich M., Schwab U., Cekicl A., Meyer K.C., Birrer P., Bellon G., Berger J., Weiss T., Botzenhart K., Yankaskas J.R., Randell S., Boucher R.C., and Doring G., 2002, Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest., 109:317–325.PubMedGoogle Scholar
  174. 174.
    Yoon S.S., Hennigan R.F., Hilliard G.M., Ochsner U.A., Parvatiyar K., Kamani M.C., Allen H.L., DeKievit T.R., Gardner P.R., Schwab U., Rowe 1.1, Iglewski B.H., McDennott T.R., Mason R.P., Wozniak D.J., Hancock R.E., Parsek M.R., Noah T.L., Boucher R.C., and Hassett D.J., 2002, Pseudomonas aernginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell, 3:593–603.PubMedCrossRefGoogle Scholar
  175. 175.
    Zaidi T.S., Lyczak J., Preston M., and Pier G.B., 1999, Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas oeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun., 67:1481–1492.PubMedGoogle Scholar
  176. 176.
    Zar H., Saiman L., Quittell L., and Prince A., 1995, Binding of Pseudomonas aeruginosa to respiratory epithelial cells from patients with various mutations in the cystic fibrosis transmembrane regulator. J Pediatr, 126:230–233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Gerald B. Pier
    • 1
  • Joanna B. Goldberg
    • 2
  1. 1.Channing Laboratory, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of MicrobiologyUniversity of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations