Skip to main content

The Pathogenic Lifestyle of Pseudomonas aeruginosa in Model Systems of Virulence

  • Chapter
Pseudomonas

Abstract

It is a constant challenge for the microbiologist not to let a human’s-eye view of the world occlude a bacterium’s-eye view71. From a human perspective, Pseudomonas aeruginosa seizes the opportunity to proliferate and cause acute disease10. Any breach of external barriers provides such an opportunity and includes tissue damage (burned skin or a scratched cornea) and procedures that allow contamination of the blood or urinary tract. Inborn mutation of the human CFTR gene results in a lung environment where P. aeruginosa can persist and cause chronic disease. Other organisms, when weakened, are also at risk. P. aeruginosa can kill waterlogged plants30 and overcrowded grasshoppers12. Because of its potential for harm, P. aeruginosa is classified as an opportunistic pathogen (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aballay A. and Ausubel F.M., 2002, Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol, 5:97–101.

    Article  PubMed  CAS  Google Scholar 

  2. Abd H., Johansson T., Golovliov I., Sandström, and Forsman M., 2003, Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol., 69:600–606.

    Article  PubMed  CAS  Google Scholar 

  3. Aravind L. and Koonin E.V, 2001, The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol, 2:1–8.

    Article  Google Scholar 

  4. Asai X, Tena G., Plotnikova J., Willmann M.R., Chiu W.-L., Gomez-Gomez L., Boiler T., Ausubel F.M., and Sheen J., 2002, MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415:977–983.

    Article  PubMed  CAS  Google Scholar 

  5. Bacot A.W., 1911, The persistence of Bacillus pyocyaneus in pupae and imagines of Musca domestica raised from larvae experimentally infected with the bacillus. Parasitology, 4:68–74.

    Article  Google Scholar 

  6. Barrett J.F. and Hoch J.A., 1998, Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother., 42:1529–1536.

    CAS  Google Scholar 

  7. Basset A., Khush R.S., Braun A., Gardan L., Boccard F., Hoffmann J.A., and Lemaitre B., 2000, The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc. Natl. Acad. Sci. USA, 97:3376–3381.

    Article  PubMed  CAS  Google Scholar 

  8. Beatson S.A., Whitchurch C.B., Sargent J.L., Levesque R.C., and Mattick J.S., 2002, Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol., 184:3605–3613.

    Article  PubMed  CAS  Google Scholar 

  9. Beatson S.A., Whitchurch C.B., Semmler A.B.T., and Mattick J.S., 2002, Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J. Bacteriol, 184:3598–3604.

    Article  PubMed  CAS  Google Scholar 

  10. Bodey G.P., Bolivar R., Fainstein V., and Jadeja L., 1983, Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis., 5:279–313.

    Article  PubMed  CAS  Google Scholar 

  11. Boman H.G., Nilsson I., andRasmuson B., 1972, Inducible antibacterial defence system in Drosophila. Nature, 237:232–235.

    Article  PubMed  CAS  Google Scholar 

  12. Bucher G.E. and Stephens J.M., 1957, A disease of grasshoppers caused by the bacterium Pseudomonas aeruginosa (Schroeter) Migula. Can. J. Bacteriol, 3:611–625.

    CAS  Google Scholar 

  13. Budzikiewicz H., 1993, Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev., 104:209–228.

    Article  CAS  Google Scholar 

  14. Cao H., Baldini R.L., and Rahme L.G., 2001, Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol, 39:259–284.

    Article  PubMed  CAS  Google Scholar 

  15. Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., and Rahme L.G., 2001, A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl Acad. Sci. USA, 98:14613–14618.

    Article  PubMed  CAS  Google Scholar 

  16. Chakrabarty A.M., 1998, Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol, 28:875–882.

    Article  PubMed  CAS  Google Scholar 

  17. Chugani S.A., Whiteley M., Lee K.M., D’Argenio D., Manoil C, and Greenberg E.P., 2001, QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 98:2752–2757.

    Article  PubMed  CAS  Google Scholar 

  18. Coleman FT., Mueschenborn S., Meluleni G., Ray C., Carey VI., Vargas S.O., Cannon C.L., Ausubel F.M., and Pier G.B., 2003, Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc. Natl. Acad. Sci. USA, 100:1949–1954.

    Article  PubMed  CAS  Google Scholar 

  19. Collier D.N., Anderson L., McKnight S.L., Noah T.L., Knowles M., Boucher R., Schwab U., Gilligan P., and Pesci E.C., 2002, A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett., 215:41–46.

    Article  PubMed  CAS  Google Scholar 

  20. Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., van Delden C., Kocjancic-Curty L., and Köhler T., 2002, Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. BacterioL, 184:3027–3033.

    Article  PubMed  CAS  Google Scholar 

  21. Couillault C., and Ewbank J.J., 2002, Diverse bacteria are pathogens of Caenorhabditis elegans. Infect. Immun., 70:4705–4707.

    Article  PubMed  CAS  Google Scholar 

  22. Daborn P.J., Waterfield N., Silva CP., Au C.P.Y., Sharma S., and ffrench-Constant R.H., 2002, A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. USA, 99:10742–10747.

    Article  PubMed  CAS  Google Scholar 

  23. Dacheux D., Attree I., Schneider C, and Toussaint B., 1999, Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type III secretion system. Infect. Immun., 67:6164–6167.

    PubMed  CAS  Google Scholar 

  24. Dangl J.L. and Jones J.D.G., 2001, Plant pathogens and integrated defence responses to infection. Nature, 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  25. Darby C, Cosma C.L., Thomas J.H., and Manoil C, 1999, Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96:15202–15207.

    Article  PubMed  CAS  Google Scholar 

  26. D’Argenio DA., Calfee M.W., Rainey P.B., and Pesci E.C., 2002, Autolysis and auto-aggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol., 184:6481–6489.

    Article  PubMed  CAS  Google Scholar 

  27. D’Argenio D.A., Gallagher L.A., Berg C.A., and Manoil C, 2001, Drosophiia as a model host for Pseudomonas aeruginosa infection. J. Bacteriol., 183:1466–1471.

    Article  PubMed  Google Scholar 

  28. Dionne M.S., Ghori N., and Schneider D.S., 2003, Drosophiia melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun., 71:3540–3550.

    Article  PubMed  CAS  Google Scholar 

  29. Elrod R.P. and Braun A.C., 1941, A phytopathogenic bacterium fatal to laboratory animals. Science, 94:520–521.

    Article  PubMed  CAS  Google Scholar 

  30. Elrod R.P. and Braun A.C., 1942, Pseudomonas aeruginosa; its role as a plant pathogen. J. Bacteriol., 46:633–645.

    Google Scholar 

  31. Epstein A.C.R., Gleadle J.M., McNeill L.A., Hewitson K.S., O’Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.-M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell PH., Pugh C.W., Schofield C.J., and Ratcliffe P.J., 2001, C. elegans Egl-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  32. Ewbank J.J., 2002, Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microb. Infect., 4:247–256.

    Article  Google Scholar 

  33. Falkow S., 2000, Living in stools is not as dumb as you think. J. Bacteriol., 182:3319–3322.

    Article  PubMed  CAS  Google Scholar 

  34. Fauvarque M.-O., Bergeret E., Chabert J., Dacheux D, Satre M., and Attree I., 2002, Role and activation of Type III secretion system genes in Pseudomonas aeruginosa-induced Drosophiia killing. Microb. Pathogen., 32:287–295.

    Article  CAS  Google Scholar 

  35. Fernández R.O. and Pizarro R.A., 1999, Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. J. Photochem. Photobiol. B: Biol., 50:59–65.

    Article  Google Scholar 

  36. Finlay B.B., 1999, Bacterial disease in diverse hosts. Cell, 96:315–318.

    Article  PubMed  CAS  Google Scholar 

  37. Firoved A.M. and Deretic V, 2003, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J. Bacteriol., 185:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  38. Flyg C, Kenne K., and Boman H.G., 1980, Insect pathogenic properties of Serratia marcescens phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. J. Gen. Microbiol, 120:173–181.

    PubMed  CAS  Google Scholar 

  39. Friedheim E.A.H., 1931, Pyocyanine, an accessory respiratory enzyme. J. Exp. Med., 54:207–221.

    Article  PubMed  CAS  Google Scholar 

  40. Gaffhey T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., and Ryals J., 1993, Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261:754–756.

    Article  Google Scholar 

  41. Gallagher L.A. and Manoil C, 2001, Pseudomonas aeruginosa PAOl kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol., 183:6207–6214.

    Article  PubMed  CAS  Google Scholar 

  42. Gallagher L.A., McKnight S.L., Kuznetsova M., Pesci E.C., and Manoil C, 2002, Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol., 184:6472–6480.

    Article  PubMed  CAS  Google Scholar 

  43. Garsin D.A., Sifri CD., Mylonakis E., Qin X., Singh K.Y., Murray B.E., Calderwood S.B. and Ausubel F.M., 2001, A simple model host for identifying Gram-positive virulence factors. Proc. Natl. Acad. Sci. USA, 98:10892–10897.

    Article  PubMed  CAS  Google Scholar 

  44. Gems D. and Riddle D.L., 2000, Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics, 154:1597–1610.

    PubMed  CAS  Google Scholar 

  45. Govan J.R.W. and Deretic V., 1996, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev., 60:539–574.

    PubMed  CAS  Google Scholar 

  46. Grcenberg B., 1969, Salmonella suppression by known populations of bacteria in flies. J. Bacteriol, 99:629–635.

    Google Scholar 

  47. Guina T., Purvine S.O., Yi E.C., Eng J., Goodlett. D.R., Aebersold R., and Miller S.I., 2003, Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl Acad. Sci. USA, 100:2771–2776.

    Article  PubMed  CAS  Google Scholar 

  48. Handelsman J. and Stabb E.V, 1996, Biocontrol of soilborne plant pathogens. Plant Cell, 8:1855–1869.

    PubMed  CAS  Google Scholar 

  49. Hassett D.J., Cuppoletti J., Trapnell B., Lymar S.V, Rowc J.J., Yoon S.S., Hilliard G.M., Parvatiyar K., Kamani M.C., Wozniak DJ., Hwang S.-H., McDermott T.R., and Ochsner U.A., 2002, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug. Deliv. Rev., 54:1425–1443.

    Article  PubMed  CAS  Google Scholar 

  50. Hays E.E., Wells I.C., Katzman P.A., Cain C.K., Jacobs F.A., Thayer S.A., Doisy E.A., Gaby W.L., Roberts E.C., Muir R.D., Carroll C.J., Jones L.R., and Wade N.J., 1945, Antibiotic substances produced by Pseudomonas aeruginosa. J. Biol Chem., 159:725–750.

    CAS  Google Scholar 

  51. Hendrickson E.L., Plotnikova J., Mahajan-Miklos S., Rahme L.G., and Ausubel F.M., 2001, mice. J Bacteriol, 183:7126–7134.

    Article  PubMed  CAS  Google Scholar 

  52. Hentzer M., Riedel K., Rasmusscn T.B., Heydorn A., Andersen J.B., Parsek M.R., Rice S.A., Eberl L., Molin S., Hoiby N., Kjellcberg S., and Givskov M., 2002, Inhibition of quo-rum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated fiiranone compound. Microbiology, 148:87–102.

    PubMed  CAS  Google Scholar 

  53. Heurlier K., Dénervaud V, Pessi G., Reimmann C, and Haas D., 2003, Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAOl. J. Bacteriol, 185:2227–2235.

    Article  PubMed  CAS  Google Scholar 

  54. Hogan D.A. and Kolter R., 2002, Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 296:2229–2232.

    Article  PubMed  CAS  Google Scholar 

  55. Hultmark. D., 2003. Drosophiia immunity: Paths and patterns. Curr. Opin. Immunol, 15:12–19.

    Article  PubMed  CAS  Google Scholar 

  56. Ichikawa J.K., Norris A., Bangera M.G., Geiss G.K., van’t Wout A.B., Bumgarner R.E., and Lory S., 2000, Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl. Acad. Sci USA, 97:9659–9664.

    Article  PubMed  CAS  Google Scholar 

  57. Jander G., Rahme L.G., and Ausubel F.M., 2000, Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol., 182:3843–3845.

    Article  PubMed  CAS  Google Scholar 

  58. Jiménez J.I., Miñambres B., Garcia J.L., and Diaz E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida K.T2440. Environ. Microbiol., 4:824–841.

    Article  PubMed  Google Scholar 

  59. Johnson CD. and Liu L. X., 2000, Novel antimicrobial targets from combined pathogen and host genetics. Proc. Natl. Acad. Sci. USA, 97:958–959.

    Article  PubMed  CAS  Google Scholar 

  60. Kamath S., Kapatral V., and Chakrabarty A.M., 1998, Cellular function of elastase in Pseudomonas aeruginosa: role in cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol. Microbiol., 30:933–941.

    Article  PubMed  CAS  Google Scholar 

  61. Kang P.J., Hauser A.R., Apodaca G., Fleiszig S.M.J., Wiener-Kronish. J., Mostov K., and Engel. J.N., 1997, Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol. Microbiol., 24:1249–1262.

    Article  PubMed  CAS  Google Scholar 

  62. Kessin R.H., Gundcrsen G.G., Zaydfudim V, Grimson M., and Blanton R.L., 1996, How cellular slime molds evade nematodes. Proc. Natl. Acad. Sci. USA, 93:4857–4861.

    Article  PubMed  CAS  Google Scholar 

  63. Khush R.S. and Lemaitre B., 2000, Genes that fight infection: what the Drosophiia genome says about animal immunity. Trends Genet., 16:442–449.

    Article  PubMed  CAS  Google Scholar 

  64. Kim D.H., Feinbaum R., Alloing G., Emerson EE., Garsin D.A., Inoue H., Tanaka-Hino, M., Hisamoto N., Matsumoto K., Tan M.-W., and Ausubel EM., 2002, A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science, 297: 623–626.

    Article  PubMed  CAS  Google Scholar 

  65. Kim H.-Y., Schlictman D., Shankar S., Xic Z., Chakrabarty A.M., and Romberg A., 1998, Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol. Microbiol., 27:717–725.

    Article  PubMed  CAS  Google Scholar 

  66. Köhler T., Curty L.K., Barja F., van Delden C, and Pechcrc J.-C, 2000, Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacterial., 182:5990–5996.

    Article  Google Scholar 

  67. Köhler T., van Delden C., Curty L.K., Hamzehpour M.M., and Pechere J.-C, 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacterial., 183:5213–5222.

    Article  Google Scholar 

  68. Kurz. C.L., and Ewbank J.J., 2000, Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol., 8:142–144.

    Article  PubMed  CAS  Google Scholar 

  69. Larbig K.D., Christmann A., Johann A., Klockgether J., Hartsch T., Merkl R., Wiehlmann, L., Fritz H.-J., and Tümmler B., 2002, Gene islands integrated into tR_NAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J. Bacteriol., 184:6665–6680.

    Article  PubMed  CAS  Google Scholar 

  70. Lau. G.W., Goumnerov B.C., Walendzicwicz CL., Hewitson J., Xiao W., Mahajan-Miklos S., Tompkins R.G., Perkins L.A., and Rahme L.G., 2003, The Drosophiia melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 71:4059–4066.

    Article  PubMed  CAS  Google Scholar 

  71. Lederberg J., 1999, Paradoxes of the host-parasite relationship. ASM News, 65:811–816.

    Google Scholar 

  72. Leisinger T. and Margraff R., 1979, Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev., 43:422–442.

    PubMed  CAS  Google Scholar 

  73. Lemaitre B., Reichhart J.-M., and Hoffmann J.A., 1997, Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA, 94:14614–14619.

    Article  PubMed  CAS  Google Scholar 

  74. Leulier F., Parquet C, Pili-FIoury S., Ryu J.-H., Caroff M., Lee W.-J., Mengin-Lecreuk D., and Lemaitre B., 2003, The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol., 4:478–484.

    Article  PubMed  CAS  Google Scholar 

  75. Lightbrown J.W. and Jackson F.L., 1956, Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem. J., 63:130–137.

    Google Scholar 

  76. Lizewski S.E., Lundberg D.S., and Schurr M.J., 2002, The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect. Immun., 70:6083–6093.

    Article  PubMed  CAS  Google Scholar 

  77. Mahajan-Miklos S., Rahme L.G., and Ausubel F.M., 2000, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol., 37:981–988.

    Article  PubMed  CAS  Google Scholar 

  78. Mahajan-Miklos S., Tan M.-W., Rahme L.G. and Ausubel F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell, 96:47–56.

    Article  PubMed  CAS  Google Scholar 

  79. Mallo G.V, Kurz C.L., Couitlault C., Pujol R., Granjeaud S., Kohara Y., and Ewbank J.J., 2002, Inducible antibacterial defense system in C. elegans. Curr. Biol, 12:1209–1214.

    Article  PubMed  CAS  Google Scholar 

  80. Maseda H., Saito K., Nakajima A., andNakae T., 2000, Variation of the mexT gene, a reg-ulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol. Lett, 192:107–112.

    Article  PubMed  CAS  Google Scholar 

  81. Mattick IS., 2002, Type IV pili and twitching motility. Annu. Rev. Microbiol, 56:289–314.

    Article  PubMed  CAS  Google Scholar 

  82. Mavrodi D.V., Bonsall R.F., Delaney S.M., Soule M.J., Phillips G., and Thomashow L.S., 2001, Functional analysis of genes for biosynthesis of pyocyanin and phenazine-l-carboxamide from Pseudomonas aeruginosa PAOl. J. Bacteriol, 183:6454–6465.

    Article  PubMed  CAS  Google Scholar 

  83. Mavrodi D.V., Ksenzenko VN., Bonsall R.F., Cook R.J., Boronin A.M., and Thomashow, L.S., 1998, A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J. Bacteriol, 180:2541–2548.

    PubMed  CAS  Google Scholar 

  84. Michel-Briand Y. and Baysse C, 2002, The pyocins of Pseudomonas aeruginosa. Biochimie, 84:499–510.

    Article  PubMed  CAS  Google Scholar 

  85. Miyata S., Casey M., Frank D.W., Ausubel F.A., and Drenkard E., 2003, Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun., 71:2404–2413.

    Article  PubMed  CAS  Google Scholar 

  86. Mylonakis E., Ausubel F.M., Perfect J.R., Heitman J., and Calderwood S.B., 2002, Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl Acad. Sci. USA, 99:15675–15680.

    Article  PubMed  CAS  Google Scholar 

  87. Nishijyo T., Haas D., and Itoh, Y, 2001, The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol., 40:917–931.

    Article  PubMed  CAS  Google Scholar 

  88. O’Quinn A.L., Wiegand E.M., and Jeddeloh J.A., 2001, Burkholderiapseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol, 3:381–393.

    Article  PubMed  Google Scholar 

  89. Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J.-M., Robert-Baudouy J., and Bohin J.-R, 2001, Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J. Bacteriol, 183:3134–3141.

    Article  PubMed  CAS  Google Scholar 

  90. Pernestig A.-K., Georgellis D., Romeo T., Suzuki K., Tomenius H., Normark S., and Melefors O., 2003, The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J. Bacteriol, 185:843–853.

    Article  PubMed  CAS  Google Scholar 

  91. Pesci E.C., Milbank J.B.J., Pearson J.P, McKnight S., Kende A.S., Greenberg E.P, and Iglewski B.H., 1999, Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96:11229–11234.

    Article  PubMed  CAS  Google Scholar 

  92. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M.T.G., Cámara M., Haas D., and Williams P., 2001, The global posttranscriptional regulator RsmA modulates production of virulence determinants and JV-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bad, 183:6676–6683.

    CAS  Google Scholar 

  93. Plotnikova J.M., Rahme L.G., and Ausubel EM., 2000, Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol., 124:1766–1774.

    Article  PubMed  CAS  Google Scholar 

  94. Preston G.M., Haubold B., and Rainey P.B., 1998, Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microbiol, 1:589–597.

    Article  PubMed  CAS  Google Scholar 

  95. Pujol N., Link E.M., Liu L.X., Kurz CL., AUoing G., Tan M.-W., Ray K.P., Solari R., Johnson C.D., and Ewbank J.J., 2001, A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol, 11:809–821.

    Article  PubMed  CAS  Google Scholar 

  96. Pukatzki S., Kessin R.H., and Mekalanos J.J., 2002, The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl Acad. Sci. USA, 99:3159–3164.

    Article  PubMed  CAS  Google Scholar 

  97. Pye A.E., 1974, Microbial activation of prophenoloxidase from immune insect larvae. Nature, 251:610–613.

    Article  PubMed  CAS  Google Scholar 

  98. Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W, Mahajan-Miklos S., Plotnikova J., Tan M.-W., Tsongalis J., Walendziewicz C.L., and Tompkins R.G., 2000, Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA, 97:8815–8821.

    Article  PubMed  CAS  Google Scholar 

  99. Rahme L.G., Stevens E.J., Wolfort S.F., Shao J., Tompkins R.G., and Ausubel F.M., 1995, Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268:1899–1902.

    Article  PubMed  CAS  Google Scholar 

  100. Rahme L.G., Tan M.-W., Le L., Wong S.M., Tompkins R.G., Calderwood S.B., and Ausubel F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 94:13245–13250.

    Article  PubMed  CAS  Google Scholar 

  101. Raper K.B. and Smith N.R., 1939, The growth of Dictyostelium discoideum upon pathogenic bacteria. J. Bacteriol., 38:431–446.

    PubMed  CAS  Google Scholar 

  102. Reimmann C, Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., and Haas D., 1997, lipase. Mol. Microbiol, 24: 309–319.

    Article  PubMed  CAS  Google Scholar 

  103. Sato H., Frank D.W., Hillard C.J., Feix J.B., Pankhaniya R.R., Moriyama K., Finck-Barbançon, V., Buchaklian A., Lei M., Long R.M., Wiener-Kronish J., and Sawa T., 2003, The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J., 22:2959–2969.

    Article  PubMed  CAS  Google Scholar 

  104. Schell M.A., 2000, Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol., 38:263–292.

    Article  PubMed  CAS  Google Scholar 

  105. Schoental R., 1941, The nature of the antibacterial agents present in Pseudomonas aeruginosa cultures. Brit. J. Exp. Pathol, 22:137–147.

    CAS  Google Scholar 

  106. Schuster M., Lostroh CP, Ogi T., and Greenberg E.P, 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol., 185:2066–2079.

    Article  PubMed  CAS  Google Scholar 

  107. Semenza G.L., 2001, the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 107:1–3.

    Article  PubMed  CAS  Google Scholar 

  108. Silo-Suh L., Suh S.-J., Sokol P.A., and Ohman D.E., 2002, A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA, 99:15699–15704.

    Article  PubMed  CAS  Google Scholar 

  109. Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., and Greenberg E.P., 2000, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407:762–764.

    Article  PubMed  CAS  Google Scholar 

  110. Spencer D.H., Kas A., Smith E.E., Raymond C.K., Sims E.H., Hastings M., Burns J.L., Kaul R., and Olson M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol., 185:1316–1325.

    Article  PubMed  CAS  Google Scholar 

  111. Steenbergen J.N., Shuman H.A., and Casadevall A., 2001, Cryptococcusneoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA, 98:15245–15250.

    Article  PubMed  CAS  Google Scholar 

  112. Steinert M., Hentschel U., and Hacker I, 2002, Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol. Rev., 26:149–162.

    Article  PubMed  CAS  Google Scholar 

  113. Steinhaus E.A., 1957, Microbial diseases of insects. Annu. Rev. Microbiol., 11:165–183.

    Article  PubMed  CAS  Google Scholar 

  114. Stephens J.M., 1958, Occurrence of Pseudomonas aeruginosa (Schroeter) Migula in haemolymph of grasshoppers after infection by feeding. Can. J. Microbiol., 4:191–193.

    Article  PubMed  CAS  Google Scholar 

  115. Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P, Hickey M.J., Brinkman, F.S.L., Humagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y, Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K, Um R., Smith K., Spencer D., Wong G.K.-S., Wu Z., Paulsen I.T., Reizer J., Saier M.H., Hancock R.E.W., Lory S., and Olson M.V, 2000, Complete genome sequence of Pseudomonas aeruginosa PAOl, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  116. Tan M.-W, 2002, Cross-Species infections and their analyses. Annu. Rev. Microbiol., 56:539–565.

    Article  PubMed  CAS  Google Scholar 

  117. Tan M.-W. and Ausubel F.M., 2000, Caenorhabditis elegans: A model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol., 3:29–34.

    Article  PubMed  CAS  Google Scholar 

  118. Tan M.-W., Mahajan-Miklos S., and Ausubel F.M., 1999, Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA, 96:715–720.

    Article  PubMed  CAS  Google Scholar 

  119. Tan M.-W., Rahme L.G., Sternberg J.A., Tompkins R.G., and Ausubel F.M., 1999, Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA, 96:2408–2413.

    Article  PubMed  CAS  Google Scholar 

  120. Timmis K.N., 2002, Pseudomonas putida: A cosmopolitan opportunist par excellence. Environ. Microbiol., 4:779–781.

    Article  PubMed  Google Scholar 

  121. Turner J.M. and Messenger A.J., 1986, Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol., 27:211–275.

    Article  PubMed  CAS  Google Scholar 

  122. Tzou P., De Gregorio E., and Lemaitre B., 2002, How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol., 5:102–110.

    Article  PubMed  CAS  Google Scholar 

  123. Tzou P., Reichhart J.-M., and Lemaitre B., 2002, Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl. Acad. Sci. USA, 99:2152–2157.

    Article  PubMed  CAS  Google Scholar 

  124. van Delden C., Comte R., and Bally M., 2001, Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol., 183:5376–5384.

    Article  PubMed  Google Scholar 

  125. Volko S.M., Boiler T., and Ausubel F.M., 1998, Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. Genetics, 149:537–548.

    PubMed  CAS  Google Scholar 

  126. Wagner VE., Bushnell D., Passador L., Brooks A.I., and Iglewski B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effect of growth phase and environment. J. Bacteriol., 185:2080–2095.

    Article  PubMed  CAS  Google Scholar 

  127. Wang J., Lory S., Ramphai R., and Jin S., 1996, Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol., 22:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  128. Wang X., Mushegian A., Lory. S., and Jin S., 1996, Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA, 93:10434–10439.

    Article  PubMed  CAS  Google Scholar 

  129. Wei J.-Z., Hale K., Carta L., Platzer E., Wong C., Fang S.-C, and Aroian R.V., 2003, Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA, 100:2760–2765.

    Article  PubMed  CAS  Google Scholar 

  130. Wolfgang M.C., Lee V.T., Gilmore M.E., and Lory S., 2003, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Develop. Cell, 4:253–263.

    Article  CAS  Google Scholar 

  131. Wu H., Song Z., Givskov M., Doring G., Worlitzsch D., Mathee K., Rygaard J., and Høiby N., 2001, Pseudomonas aeruginosa mutations in lasI and rhll quorum sensing systems result in milder chronic lung infection. Microbiology, 147:1105–1113.

    PubMed  CAS  Google Scholar 

  132. Yoon S.S., Hcnnigan R.F., Hilliard G.M., Ochsner U.A., Parvatiyar K., Kamani M.C., Allen H.L., DeKievit T.R., Gardner PR., Schwab U., Rowe J.J., Iglewski B.H., McDermott T.R., Mason R.P, Wozniak D.J., Hancock R.E.W., Parsek M.R., Noah T.L., Boucher R.C., and Hassett D.J., 2002, Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Develop. Cell, 3:593–603.

    Article  CAS  Google Scholar 

  133. Yorgey P., Rahme L.G., Tan M.-W, and Ausubel F.M., 2001, The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol, 41:1063–1076.

    Article  PubMed  CAS  Google Scholar 

  134. Young G., 1947, Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J. Bacterial, 54:109–117.

    CAS  Google Scholar 

  135. Yu H., Boucher J.C., Hibler N.S., and Deretic V, 1996, Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (σE). Infect. Immun., 64:2774–2781.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Argenio, D.A. (2004). The Pathogenic Lifestyle of Pseudomonas aeruginosa in Model Systems of Virulence. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics