Skip to main content

Life in the Phyllosphere

  • Chapter
Pseudomonas

Abstract

The microbiology of the aerial portion of plants supports a diversity of microorganisms, including bacteria, fungi and archeae. In addition there are direct interactions with eukaryotic species that feed off the plant. The abundance of life in the phyllosphere is matched by the habitat range that plants occupy in both terrestrial and aquatic environments. Plant leaves provide the greatest surface area on the planet tolerating geographic and climatic extremes that can fluctuate on a daily cycle from sub-zero night time temperatures to leaf surface temperatures that exceed 50°C in direct sunlight. Plants are found in over 90% of the approximately 2 × 108 km2 terrestrial surface of the planet where the surface area of leaves (the phylloplane) approaches 1 × 10 km2 [ref. 75]. It is a statement of fact that those bacteria that have adapted to life in the phyllosphere must exhibit a range of phenotypic characteristics to mitigate against the effect of these physical parameters. These are perhaps greater that those experienced by soil or rhizosphere bacteria. However resource limitation, in respect to nutrient supply and water availability are common selective factors that dictate the range and functional capacity of microbial life at plant surfaces. To understand more about the wider context of leaf microbiology the reader is directed to the conference proceedings of the two most recent symposia on phyllosphere microbiology66,78, and recent reviews that cover a number of related issues that have not been dealt with in depth here64,65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews J.H. and Harris R.F., 2000, The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol., 38:145–180.

    PubMed  Google Scholar 

  2. Ashleford K.E., Norris S.J., Fry J.C., Bailey M.J., and Day M.J., 2000, Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl. Environ. Microbiot, 66: 4193–4.

    Google Scholar 

  3. Bailey M.J. and Lilley A.K., 2002, Niche colonisation and the dispersal of bacteria and their genes in the natural environment. In J.M. Bullock, J.M. Kenwood, and R.S. Hails (eds.), Dispersal Ecology, Proceedings of the 42nd British Ecological Society, pp. 219–236. Blackwell Publishing Oxford, UK.

    Google Scholar 

  4. Bailey M.J., Lilley A.K., and Diaper J.D., 1996, Gene transfer in the phyllosphere. In C.E. Morris, P. Nicot, and C. Nguyen-the (eds.), Microbiology of Aerial Plant Surfaces, pp. 103–123. Plenum Publishing New York.

    Google Scholar 

  5. Bailey M.J., Lilley A.K., Thompson I.P., Rainey P.B., and Ellis R.J., 1995, Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol. Ecol., 4:755–764.

    PubMed  CAS  Google Scholar 

  6. Bailey M.J., Rainey P.B., Zhang X-X., and Lilley A.K., 2001, Population dynamics, gene transfer and gene expression in plasmids, the role of the horizontal gene pool in local adaptation at the plant surface. In S. Lindow, El. Hecht-Poiner, and V.J. Elliott (eds), Phyllosphere Microbiology, pp. 171–189. American Phytopathology Society Press St. Paul, MN.

    Google Scholar 

  7. Bailey M.J., Timms-Wilson. T.M., Ellis R.J., Thompson I.P., and Lilley A.K., 2000, Monitoring persistence and risk assessment following the field release of Pseudomonas fluorescens SBW25EeZY6KX. In J.K. Jansson, J.D. Van Elsas, and M.J. Bailey (eds), Tracking Genetically Engineered Micro-organisms, pp. 117–126. Landes Bioscience, Georgetown Texas.

    Google Scholar 

  8. Baumberg S., Young J.P.W., Wellington E.M.H., and Saunders J.R. (eds.), 1995, Population Genetics of Bacteria. Society for General Microbiology Reading.

    Google Scholar 

  9. Behrent U., Ulrich A., Schumann P., Erler W., Burghardt J., and Seyfarth W., 1999, A taxonomic study of bacteria isolated from grasses: A proposed new species Pseudomonas graminis sp. nov. Int. J. Syst. Bacteriol., 49:297–308.

    Google Scholar 

  10. Bender C.L. and Cooksey D.A., 1986, Indigenous plasmids in Pseudomonas syringae pv. tomato: Conjugative transfer and role of copper resistance. J. Bacteriol., 165:534–541.

    PubMed  CAS  Google Scholar 

  11. Bergstrom C.T., Lipsitch M., and Levin B.R., 2000, Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics, 155:1505–1519.

    PubMed  CAS  Google Scholar 

  12. Bertolla F., Frostegard A., Brito B., Nesme X., and Simonet P., 1999, During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant-Microb. Interact., 12:467–472.

    CAS  Google Scholar 

  13. Bjorklof K., Nurmiaho-Lassila E.L., Klinger N., Haahtela K., and Romantschuk M., 2000, Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. J. Appl. Microbiol., 89:423–432.

    PubMed  CAS  Google Scholar 

  14. Björklöf K., Suoniemi A., Haahtela H., and Romantschuk M., 1995, High frequency of conjugation verses plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiology, 141:2719–2727.

    PubMed  Google Scholar 

  15. Burr T.J., Katz B., Hoying S.A., Wilcox W.F., and Norelli J.L., 1998, Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards ad its association with a conjugative plasmid. Phytopathology, 78:410–413.

    Google Scholar 

  16. Cho J.C. and Tiedje J.M., 2000, Biogeography and degree of endemicity of fluorescent pseudomonas strains in soil. Appl. Environ. Microbiol., 66:5448–5456.

    PubMed  CAS  Google Scholar 

  17. Costerton J.W., Lewandowski Z., Caldwell. D.E., Korber D.R., and Lappin-Scott H.M., 1995, Microbial biofilms. Annu. Rev. Microbiol., 49:711–745.

    PubMed  CAS  Google Scholar 

  18. Davison J., 1999, Genetic exchange between bacteria in the environment. Plasmid, 42:73–91.

    PubMed  CAS  Google Scholar 

  19. Donegan K.K., Seidler R.J., Doyle J.D. et al., 1999, A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: Effects on the soil ecosystem. J. Appl. Ecol., 36:920–936.

    Google Scholar 

  20. Droege M., Puehler A., and Selbitschka W., 1999, Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol. Fert. Soils, 29:221–245.

    Google Scholar 

  21. Ellis R.J., Thompson I.P., and Bailey M.J., 1999, Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol Ecol, 28:345–356.

    CAS  Google Scholar 

  22. Ellis R.J., Thompson I.P., and Bailey M.J., 1995, Metabolic profiling as a means of characterising plant-associated microbial communities. FEMS Microbial. Ecol., 16:9–18.

    CAS  Google Scholar 

  23. Ercolani G.L., 1991, Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. J. Gen. Microbiol., 109:245–257.

    Google Scholar 

  24. Espinosa-Urgel M., Kolter R., and Ramos J.-L., 2002, Root colonisation by Pseudomonas putida: Love at first sight. Microbiology, 148:341–343.

    PubMed  CAS  Google Scholar 

  25. Givskov M., de Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P.D., and Kjelleberg S., 1996, Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol., 178:6618–6622.

    PubMed  CAS  Google Scholar 

  26. Glover-Glew J., Scott-Angle S., and Sadowsky M.J., 1993, In vivo transfer of pR68.45 from Pseudomonas aeruginosa into indigenous soil bacteria. Microb. Rel., 1:237–241.

    Google Scholar 

  27. Haubold B. and Rainey P.B., 1996, Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol Ecol., 5:747–761.

    Google Scholar 

  28. Heuer H. and Smalla K. 1999, Bacterial phyllosphere communities of Solanum tuberosum L. and T4-lysozymc producing transgenic variants. FEMS Microbiol. Ecol., 28:357–371.

    CAS  Google Scholar 

  29. Hirano S.S., and Upper C.D., 2000, Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev., 64:624–653.

    PubMed  CAS  Google Scholar 

  30. Hirano S.S., Charkowski A.O., Collmer A., Willis D.K., and Upper C.D., 1999, Role of the Hrp type III protein secretion system in growth of Psendomonas syringae pv. syringae B728a on host plants in the field. Proc. Natl. Acad. Sci. USA, 96:9851–9856.

    PubMed  CAS  Google Scholar 

  31. Hirano S.S., Ostertag E.M., Savage S.A., Baker L.A., Willis D.K., and Upper C.D., 1997, Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol., 63:4304–4312.

    PubMed  CAS  Google Scholar 

  32. Jacobs J.L. and Sundin G.W., 2001, Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl. Environ. Microbiol., 67:5488–5496.

    PubMed  CAS  Google Scholar 

  33. Jacques M.-A. and Morris C.E., 1995, A review of issues related to the quantification of bacteria from the phyllosphere. FEMS Microbiol. Ecol., 18:1–14.

    CAS  Google Scholar 

  34. Jacques M.-A., Kinkel L.L., and Morris C.E., 1995, Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endiva var. latifolia). Appl. Environ. Microbiol., 61:899–906.

    PubMed  CAS  Google Scholar 

  35. Jansson J.K., 2003, Marker and reporter genes: illuminating tools for environmental microbiologists. Curr. Opin. Microbiol, 6:310–316.

    PubMed  CAS  Google Scholar 

  36. Jansson J.K., Van Elsas J.D., and Bailey M.J. (eds.), 2000, Tracking Genetically Engineered Micro-organisms. Landes Bioscience Georgetown, Texas.

    Google Scholar 

  37. Joyner D.C. and Lindow S.E., 2000, Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology, 146:2435–2445.

    PubMed  CAS  Google Scholar 

  38. Jurkevitch E.J. and Shapira G., 2000, Structure and colonization dynamics of epiphytic bacterial communities and of selected component strains on tomato (Lycopersicon esculentum) leaves. Microb. Ecol., 40:300–308.

    PubMed  Google Scholar 

  39. Kay E., Vogel T.M., Bertolla F., Nalin R., and Simonet P., 2002, In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol., 68:3345–3351.

    PubMed  CAS  Google Scholar 

  40. Kidambi S.P., Ripp S., and Miller R.V., 1994, Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phylloplane. Appl. Environ. Microbiol., 60:496–500.

    PubMed  CAS  Google Scholar 

  41. Kinkel L.L., 1997, Microbial population dynamics on leaves. Annu. Rev. Phytopathol., 35:327–347.

    PubMed  CAS  Google Scholar 

  42. Kinkel L.L., Wilson M., and Lindow S.E., 2000, Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb. Ecol., 39:1–11.

    PubMed  Google Scholar 

  43. Kinkle L.L., Wilson M., and Lindow S.E., 2000, Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb. Ecol., 39:1–11.

    Google Scholar 

  44. Kiraly Z., El-Zahaby H.M., and Klement Z., 1997, Role of extracellular polysaccharide (EPS) slime in plant pathogenic bacteria in protecting cells to reactive oxygen species. J Phytopathol., 145:59–68.

    CAS  Google Scholar 

  45. Kjelleberg S. and Steinberg P.D., 2002. Defenses against bacterial colonization of marine plants. In S.E. Lindow, E.J. Hecht-Poinar, and V Elliott (eds.), Phyllosphere Microbiology, pp. 157–172, American Phytopathology Society Press St. Paul, MN.

    Google Scholar 

  46. Knudsen G.K., Walter M.V., Porteous L.A., Prince V.J., Armstrong J.L., and Seidler R.J., 1988, Predictive model of conjugative plasmid transfer in the rhizosphere and phyllosphere. Appl. Environ. Microbiol., 54:343–347.

    PubMed  CAS  Google Scholar 

  47. Kobayashi N. and Bailey M.J., 1994, Plasmids isolated from the sugar beet phyllosphere show tittle or no homology to molecular probes currently available for plasmid typing. Microbiology, 140:289–295.

    PubMed  CAS  Google Scholar 

  48. Kroer N., Barkay. T., Sorensen S., and Weber D., 1998, Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol. Ecol., 25:375–384.

    CAS  Google Scholar 

  49. Lawton J.H., Naeem S., Woodfin R.M., Brown V.K., Gange A., Godfray H.C.J., Heads P.A., Lawler S., Magda V., Thomas C.D., Thompson L.J., and Young S., 1993, The Ecotron: a controlled environmental facility for the investigation of population and ecosystems processes. Phil. Trans. Roy. Soc., 341:181–194.

    Google Scholar 

  50. Legard D.E., McQuilken M.P., Whipps J.M., Fenlon J.S., Fermor T.R., Thompson I.P. Bailey M.J., and Lynch J.M., 1994, Studies of seasonal changes in the microbial populations in the phyllosphere of spring wheat; A prelude to the release of a genetically modified microorganism. Agric. Ecosys. Environ., 50:87–101.

    Google Scholar 

  51. Leveau J.H.J. and Lindow S.E., 2001, Appetite of an epiphyte: Quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Nat. Acad. Sci. USA, 98:3446–3453.

    PubMed  CAS  Google Scholar 

  52. Levin B.R., and Bergstrom C.T., 2000, Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc. Nail. Acad. Sci. USA. 97:6981–6985.

    CAS  Google Scholar 

  53. Levin B.R. and Lenski R.E., 1983, Coevolution of bacteria and their viruses and plasmids. In D.J. Futuyma and M. Slatkin (eds.), Coevolution, Sinauer Associates Inc Sunderland, Massachuesetts. pp. 99–127.

    Google Scholar 

  54. Levin B.R., Stewart F.M., and Rice V.A., 1979, The kinetics of conjugative plasmid transmission: Fit of a simple mass action model. Plasmid, 2:247–260.

    PubMed  CAS  Google Scholar 

  55. Lilley A.K. and Bailey M.J., 1997, Impact of pQBR103 acquisition and carriage on the phytosphere fitness of Pseudomonas fluorescens SBW25: Burden and benefit. Appl. Environ. Microbiol., 63:1584–1587.

    PubMed  CAS  Google Scholar 

  56. Lilley A.K. and Bailey M.J., 1997, The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonising die phytosphere of sugar beet is related to local environmental conditions. Appl. Environ. Microbiol., 63:1577–1583.

    PubMed  CAS  Google Scholar 

  57. Lilley A.K. and Bailey M.J., 2002, The transfer dynamics of Pseudomonas sp. Plasmid pQBR103 in biofilms. FEMS Microbiol. Ecol., 42:243–249.

    PubMed  CAS  Google Scholar 

  58. Lilley A.K, Bailey M.J., Barr M., Kilshaw K., Timms-Wilson T.M., Day M.J., Norris S.J., Jones T.H., and Godfray H.C.J., 2003, Population dynamics and gene transfer in genetically modified bacteria in a model mesocosm, Mol. Ecol., 12:3097–3107.

    PubMed  CAS  Google Scholar 

  59. Lilley A.K., Bailey M.J., Day M.J., and Fry J.C., 1996, Diversity of mercury resistance plasmids obtained by exogenous isolation from the bacteria of sugar beet in three successive seasons. FEMS Microbial. Ecol., 20:211–227.

    CAS  Google Scholar 

  60. Lilley A.K., Fry J.C., Day M.J., and Bailey M.J., 1994, In situ transfer of an exogenously isolated plasmid between indigenous donor and recipient Pseudomonad spp in sugar beet rhizosphere. Microbiol., 140:27–33.

    CAS  Google Scholar 

  61. Lilley A.K., Hails R.S., Gory J.S., and Bailey M.J., 1997, The dispersal and establishment of pseudomonad populations in the phyllosphere of sugar beet by phytophagous caterpillars. FEMS Microbiol Ecol., 24:151–158.

    CAS  Google Scholar 

  62. Lilley A.K., Young J.P., and Bailey M.J., 1999, Bacterial population genetics; do plasmids maintain diversity and adaptation? In C.M. Thomas (ed), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 287–300. Harwood Academic Publishers.

    Google Scholar 

  63. Lindow S.E., 1987, Competitive exclusion of epiphytic bacteria by Ice Pseudomonas syringae mutants. Appl Environ. Microbiol., 53:2520–2527.

    PubMed  CAS  Google Scholar 

  64. Lindow S.E. and Brandi M.T., 2003, Microbiology of the phyllosphere. Appl. Environ. Microbiol., 69:1875–1883.

    PubMed  CAS  Google Scholar 

  65. Lindow S.E. and Leveau J.H.J., 2002, Phyllosphere microbiology. Curr Opin. Biotech., 13:238–243.

    PubMed  CAS  Google Scholar 

  66. Lindow S.E., Hecht-Poinar E.I., and V. Elliott (eds.), 2002, Phyllosphere microbiology. American Phytopathology Society Press St. Paul, MN.

    Google Scholar 

  67. MacDonald J.A., Smets B.E, and Rittmann B.E., 1992, The effects of energy availability on the conjugative-transfer kinetics of plasmid RP4. Water Res., 26:461–468.

    CAS  Google Scholar 

  68. Mae A., Montesano M., Koiv V., and Palva E.T., 2001, Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol. Plant-Microbe. Int., 14:1035–1042.

    CAS  Google Scholar 

  69. Manefield M., de Nys R., Kumar N., Read R., Giskov M., Steinburg P.D., and Kjelleberg, S., 1999, Evidence that halogenated furanones from Delisa pulchra inhibit acylated homoserme lactone (AHL) mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology, 145:283–291.

    PubMed  CAS  Google Scholar 

  70. Marco M.L., Legac J., and Lindow S.E., 2003, Conditional survival as a selection strategy to identify plant-inducible genes of Pseudomonas syringae. Appl Environ. Microbiol., 69:5793–5801.

    PubMed  CAS  Google Scholar 

  71. Mechaber W.L., Marshall D.B., Mechaber R.A., Jobe R.T., and Chew F.S., 1996, Mapping leaf surface landscapes. Proc. Natl. Acad. Sci. USA, 93:4600–4603.

    PubMed  CAS  Google Scholar 

  72. Mercier J. and Lindow S.E., 2000, Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol., 66:369–374.

    PubMed  CAS  Google Scholar 

  73. Miller W.G., Brandi M.T., Quiñones B., and Lindow S.E., 2001, Biological sensor for sucrose availability: Relative sensitivities of various reporter genes. Appl. Environ. Microbiol., 67:1308–1317.

    PubMed  CAS  Google Scholar 

  74. Molina L., Constantinescu F., Michel L., Reimmann C., Duffy B., and Défago G., 2003, Degradation of pathogen quorum-sensing molecules by soil bacteria: A preventive and curative biological control mechanism. FEMS Microbiol. Ecol., 45:71–81.

    PubMed  CAS  Google Scholar 

  75. Morris C.E. and Kinkel L.L., 2002, Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In S. E. Lindow, E. I. Hecht-Poinar, and V. Elliott (eds.), Phyllosphere Microbiology, pp. 365–375. American Phytopathology Society Press, St. Paul, MN.

    Google Scholar 

  76. Morris C.E., Monier J.M., and Jacques M.A., 1997, Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol., 63:1570–1576.

    PubMed  CAS  Google Scholar 

  77. Morris C.E., Monier J.M., and Jacques M.A., 1998, A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol., 64:4789–4795.

    PubMed  CAS  Google Scholar 

  78. Morris C.E., Nicot P., and Nguyen-the C. (eds.), 1996, Microbiology of Aerial Plant Surfaces. Plenum Publishing New York.

    Google Scholar 

  79. Muyzer G. and Smalla K., 1998, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw. Int J. 73:127–141.

    CAS  Google Scholar 

  80. Nielsen K.M., Bones A.M., Smalla K., and Van Elsas J.D., 1998, Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol. Rev. 22:79–103.

    PubMed  CAS  Google Scholar 

  81. Nielsen K.M., Van Elsas J.D., and Smalla K., 2000, Transformation of Acinetobacter sp. strain BD4t3(pFG4ΔnptII) with transgenic plant DNA in soil microcusms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol., 66:1237–1242.

    PubMed  CAS  Google Scholar 

  82. Normander B., Christensen B.B., Molin S., and Kroer N., 1998, Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl Environ. Microbiol., 64:1902–1909.

    PubMed  CAS  Google Scholar 

  83. O’Brien R.D. and Lindow S.E., 1989, Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology, 79:619–627.

    Google Scholar 

  84. Osborn M.A., Bruce K.D., Strike P., and Ritchie D.A., 1997, Distribution, diversity and evolution of bacterial mercury resistance (mer) operon. FEMS Mirobiol. Rev., 19:239–262.

    CAS  Google Scholar 

  85. O’Toole G.A. and Kolter R., 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol Microbiol., 28:449–461.

    PubMed  Google Scholar 

  86. Pierson E.A., Wood D.W., Cannon J.A., Blachere F.M., and Pierson III L.S., 1998, Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact., 11:1078–1084.

    CAS  Google Scholar 

  87. Pierson L.S., III, Wood D.W., and Pierson E.A., 1998, Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol., 36:207–225.

    PubMed  CAS  Google Scholar 

  88. Powell B.J., Purdy K.J., Thompson I.P., and Bailey M.J., 1993, Demonstration of tra+ plasmid activity in bacteria indigenous to the phyllosphere of sugar beet; Gene transfer to a genetically modified pseudomonad. FEMS Microbiol. Ecol., 12:195–206.

    CAS  Google Scholar 

  89. Preston G.M., Bertand H., and Rainey P.B., 2001, Type III secretion in plant growth promoting Pseudomonas fluorescens SBW25. Mol. Microhiol., 41:999–1014.

    CAS  Google Scholar 

  90. Rainey P.B. and Preston G.M., 2000, In vivo expression technology strategies: Valuable tools for biotechnology. Curr Opinion Biotechnol., 11:440–444.

    CAS  Google Scholar 

  91. Rainey P.B. and Bailey M.J., 1996, Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol. Microbiol., 19:521–533.

    PubMed  CAS  Google Scholar 

  92. Rainey P.B., Bailey M.J., and Thompson I.P., 1994, Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field grown sugar beet. Microbiology, 140:2315–2331.

    PubMed  CAS  Google Scholar 

  93. Richaume A., Smit B., Faurie G., and van Elsas J.D., 1992, Influence of soil type on the transfer of plasmid-Rp4(p) from Pseudomonas fluorescens to introduced recipient and to indigenous bacteria. FEMS Microbiol. Ecol., 101:281–292.

    CAS  Google Scholar 

  94. Ritchie N.J., Schutter M.E., Dick R.P., and Myrold D.D., 2000, Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ. Microbiol., 66:1668–1675.

    PubMed  CAS  Google Scholar 

  95. Schneidereit H. and Schmidt F.R.J., 1990, The use of a Sesbania rostrata microcosm for studying gene transfer among microorganisms., J.C. Fry and M.J. Day (eds.), Bacterial Genetics in natural environment pp. 1–20. Chapman & Hall London.

    Google Scholar 

  96. Schwaner N.E. and Kroer N., 2001, Effect of plant species on the kinetics of conjugal transfer in the rhizosphere and relation to bacterial metabolic activity. Microbiol. Ecol. 42:458–465.

    CAS  Google Scholar 

  97. Sengeløv G., Kristensen KJ., Sørensen A.H., Kroer N., and Sørensen S.J., 2001, Effect of genomie location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings. Curr. Microbiol. 42: 160–167.

    PubMed  Google Scholar 

  98. Simonsen L., 1990, Dynamics of plasmid transfer on surfaces, J. Gen. Microbiol., 136:1001–1008.

    PubMed  CAS  Google Scholar 

  99. Simonsen L., 1991, The existence conditions for bacterial plasmids—theory and reality. Microbiol. Ecol., 22:187–205.

    Google Scholar 

  100. Simonsen L., Gordon D.M., Stewart F.M., and Levin B.R., 1990, Estimating the rate of plasmid transfer: An end-point method. J. Gen. Microbiol., 136:2319–2326.

    PubMed  CAS  Google Scholar 

  101. Smit E., van Elsas J.D., van Veen J.A., and de Vos W.M., 1991, Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil using phage phiR2f for donor counter selection. Appl. Environ. Microbiol., 57:3482–3488.

    PubMed  CAS  Google Scholar 

  102. Smit E., Wolters A., and van Elsas J.D., 1998, Self-transmissible mercury resistance plasmids with gene-mobilizing capacity in soil bacterial populations: Influence of wheat roots and mercury addition. Appl. Environ. Microbiol., 64; 1210–1219.

    PubMed  CAS  Google Scholar 

  103. Spiers A.J., Field D., Bailey M.J., and Rainey P.B., 2001, Notes on designing a partial genomic data base. The PfSBW25 Encyclopedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology, 147:247–249.

    PubMed  CAS  Google Scholar 

  104. Sudarshana P. and Knudsen G.R., 1995, Effect of parental growth on the dynamics of conjugative plasmid transfer in the pea spermosphere. Appl. Environ. Microbiol., 61:3136–3141.

    PubMed  CAS  Google Scholar 

  105. Sudin G.W., 2000, Sequence diversity of rulA among natural isolates of Pseudomonas syringae and effect on function of ruIAB-mediated UV radiation tolerance. Appl. Environ. Microbiol., 66:5167–5173.

    Google Scholar 

  106. Lambert B., Meire P., Joos H., Lens P., and Swings J., 1990, Fast growing aerobic heterotrophic bacteria from the rhizosphere of young sugar beet plants. Appl Environ. Microbiol., 56:3375–3381.

    PubMed  CAS  Google Scholar 

  107. Thomas C.M. (ed.), 2000, The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread. Harwood Academic Publishers Amsterdam, The Netherlands.

    Google Scholar 

  108. Thompson I.P., Bailey M.J., Ellis R.J., Lilley A.K., McCormack P.J., Purdy K., and Rainey P.B., 1995, Short term community dynamics in the phyllosphere microbiology of field grown sugar beet. FEMS Microbiol. Ecol., 16:205–211.

    CAS  Google Scholar 

  109. Thompson I.P., Bailey M.J., Fenlon J.S., Fermor T.R., Lilley A.K., Lynch J.M., McMormack P.J., McQilken M.P., Purdy K.J, Rainey P.B., and Whipps J.M., 1993, Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil, 150:177–191.

    Google Scholar 

  110. Thompson I.P., Lilley A.K., Ellis R.J., Bramwell PA., and Bailey M.J., 1995, Survival, colonisation and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet. Nature/Biotech., 13:1493–1497.

    CAS  Google Scholar 

  111. Troxler J., Azetvandre P., Zala M., Defago G., and Hans D., 1997, Conjugative transfer of chromosomal genes between fluorescent pseudomonads in the rhizosphere of wheat. Appl. Environ. Microbiol, 63:213–219.

    PubMed  CAS  Google Scholar 

  112. Turner S.L., Bailey M.J., Lilley A.K., and Thomas C.M., 2002, Ecological and molecular maintenance strategies of mobile genetic elements. FEMS Microbiol Ecol., 42:177–186.

    PubMed  CAS  Google Scholar 

  113. Unge A., Tombolini R., Mølbak L., and Jansson J.K., 1998, Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol., 65:813–821.

    Google Scholar 

  114. van Elsas J.D., Starodub M.E., and Trevors J.T., 1988, Bacterial conjugation between Pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Ecol., 53:299–306.

    Google Scholar 

  115. van Elsas J.D., Trevors J.T., and Starodub M.E., 1989, Bacterial conjugation between Pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Ecol., 53:299–306.

    Google Scholar 

  116. van Elsas J.D., Turner S.L., and Bailey M.J., 2003, Horizontal gene transfer in the phytosphere. New Phytopathol., 157:525–537.

    Google Scholar 

  117. van Elsas J.D., van Overbeek L.S., and Nikkel M., 1989, Detection of plasmid RP4 transfer in soil and rhizospbere, and the occurrence of homology to RP4 in soil bacteria. Curr. Microbiol., 19:375–381.

    Google Scholar 

  118. van-Elsas J.D., Mcspadden-Gardener B.B., Wolters A.C., and Smit E., 1998, Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl. Environ. Microbiol., 64:880–889.

    PubMed  Google Scholar 

  119. Versalovic J., Koeuth I., and Lupski J.R., 1991, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucl Acid Res., 19:6823–6831.

    CAS  Google Scholar 

  120. Versalovic J., Schneider M., De Bruijn F.J., and Lupski J.R., 1994, Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth. Mol. Cell Biol., 5:25–40.

    CAS  Google Scholar 

  121. Whiteley A.S. and Bailey M.J., 2000, Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ. Microbiol., 66:2400–2407.

    PubMed  CAS  Google Scholar 

  122. Whiteley A.S., Griffiths R.I., and Bailey M.J., 2003, Analysis of the functional diversity within water-stressed soil communities by flow cytometric analysis and CTC+ cell sorting. J. Microbiol. Math., 54:257–267.

    Google Scholar 

  123. Williams J.G.K., Kubelik A.R., Livak K.I, Rafalski J.A., and Tingey S.V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res., 18:6531–6535.

    CAS  Google Scholar 

  124. Wilson M. and Lindow S.E., 1992, Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae. Appl. Environ. Microbial., 58:3908–3913.

    CAS  Google Scholar 

  125. Yang C-H., Crowley D.E., Bornmeman J., and Keen N.T., 2001, Microbial phyllosphere populations are more complex than previously realized. Proc. Natl. Acad. Sci USA, 98:3889–3894.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bailey, M.J. (2004). Life in the Phyllosphere. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics