Skip to main content

Pseudomonas in the Soil Environment

  • Chapter
Pseudomonas

Abstract

The soil environment provides a maximum of ecological opportunity (vacant niche space) and competition, considered by Darwin22 to be the main causes of diversity patterns among species. Although this theoretical basis was not developed for microorganisms, it seems plausible that diversification among soil microorganisms including Pseudomonas spp. bacteria is indeed related to the heterogeneity of this environment. It has long been known that growth factors like availability of substrate, water and oxygen, etc. but also mortality factors like starvation and predation may vary within distances com- parable to the microbial cell size. The bulk soil environment certainly carries a diversification of indigenous soil microorganisms on the surface and within aggregates, associated with pore structures or in water films. Yet, it is the active hot-spots of plant debris and the interactive plant-soil environments (spermosphere, rhizosphere and residuesphere) that have recently motivated the microbiologists to work on soil Pseudomonas spp., perhaps bearing in mind the prospects of exploiting these bacteria for benefits of plant growth stimulation or protection, or for polluted-soil remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagot N., Nybroe O., Nielsen P., and Johnsen K., 2001, An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selectivc soil extract media. Appl. Environ. Microbiol., 67:5233–5239.

    Article  PubMed  CAS  Google Scholar 

  2. Achouak W., Thiéry J.M., Roubaud P., and Heulin T., 2000, Impact of crop management on intraspecific diversity of Pseudomonas corrugata in bulk soil. FEMS Microbiol. Ecol., 31:11–19.

    Article  PubMed  CAS  Google Scholar 

  3. Andersen S.M., Johnsen K., Sørensen J., Nielsen J., and Jacobsen C.S., 2000, isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol., 50:1957–1964.

    Article  PubMed  CAS  Google Scholar 

  4. Bach H.J., Hartmann A., Schloter M., and Munch J.C., 2001, PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and soil. J. Microbiol. Meth., 44:173–182.

    Article  CAS  Google Scholar 

  5. Bach H.J., Tomanova J., Schloter M., and Munch J.C., 2002, Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J. Microbiol. Meth., 49:235–245.

    Article  CAS  Google Scholar 

  6. Bakermans C. and Madsen E.L., 2002a, Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb. Ecol., 44:95–106.

    Article  PubMed  CAS  Google Scholar 

  7. Bakermans C. and Madsen E.L., 2002b, Detection in coal tar waste-contaminated ground-water of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridisation with tyramide signal amplification. J. Microbiol. Meth., 50:75–84.

    Article  CAS  Google Scholar 

  8. Barrett E.J., Solanes R.E., Tang J.S., and Palleroni N.J., 1986, Pseudomonas fluorescens biovar V: Its resolution into distinct groups and relationships of these groups to other P. fluorescens biovars and to P. putida, and to psychrotrophic pseudomonads associate with food spoilage. J. Gen. Microbiol., 132:2709–2721.

    PubMed  CAS  Google Scholar 

  9. Berg G., Roskot N., Steidle A., Eberl L., Zock A., and Smalla K., 2002, Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol., 68:3328–3338.

    Article  PubMed  CAS  Google Scholar 

  10. Bloemberg G.V., O’Toole G.A., Lugtenberg B.J.J., and Kolter R., 1997, Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol., 63:4543–1551.

    PubMed  CAS  Google Scholar 

  11. Boronin A.M., 1992, Diversity of Pseudomonas plasmids: To what extent? FEMS Microbiol. Lett., 100:461–468.

    CAS  Google Scholar 

  12. Bossis E., Lemanceau P., Latour X., and Gardan L., 2000, The taxonomy of Pseudomonas Fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie, 20:51–63.

    Article  Google Scholar 

  13. Braun-Howland E.B., Vescio P.A., and Nierzwicki-Bauer S.A., 1993, Use of a simplified cell blot technique and 16S rRNA-directed probes for identification of common environmental isolates. Appl. Environ. Microbiol., 59:3219–3224.

    PubMed  CAS  Google Scholar 

  14. Bultreys A., Gheysen L, Wathelet B., Maraite H., and de Hoffinen E., 2003, High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species. Appl. Environ. Microbiol., 69: 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  15. Busse H.J., El-Banna T., and Auling G., 1989, Evaluation of different approaches for identification of xenobiotic-degrading Pseudomonads. Appl. Environ. Microbiol., 55: 1578–1583.

    PubMed  CAS  Google Scholar 

  16. Campbell J.I.A., Jacobsen C.S., and Sorensen J., 1995, Species variation and plasmid incidence among fluorescent Pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbiol. Ecol., 18:51–62.

    Article  CAS  Google Scholar 

  17. Cho J.-C. and Tiedje J.M., 2000, Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol., 66:5448–5456.

    Article  PubMed  CAS  Google Scholar 

  18. Chow M.L., Radomski C.C., McDermott J.M., Davies J., and Axelrood P.E., 2002, Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol. Ecol., 42:347–357.

    Article  PubMed  CAS  Google Scholar 

  19. Christensen H., Boye M., Poulsen L.K., and Rasmussen O.E, 1994, Analysis of fluorescent pseudomonads based on 23S ribosomal DNA sequences. Appl. Environ. Microbiol., 60:2196–2199.

    PubMed  CAS  Google Scholar 

  20. Clays-Josserand A., Lemanceau P., Philippot L., and Lensi R., 1995, Influence of two plant species (flax and tomato) on the distribution of nitrogen dissimilative abilities within fluorescent Pseudomonas spp. Appl. Environ. Microbiol., 61:1745–1749.

    PubMed  CAS  Google Scholar 

  21. Clays-Josserand A., Ghiglione J.F., Philippot L., Lemanceau P., and Lensi R., 1999, Effect of soil type and plant species on the fluorescent pseudomonads nitrate dissimilating community. Plant Soil, 209:275–282.

    Article  CAS  Google Scholar 

  22. Darwin C., 1859, The Origin of Species. Murray London.

    Google Scholar 

  23. Dawson S.L., Fry J.C., and Dancer B.N., 2002, A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J. Microbiol. Meth., 50:9–22.

    Article  CAS  Google Scholar 

  24. de Bruijn F., 1992, Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti and other soil bacteria. Appl. Environ. Microbiol., 58:2180–2187.

    PubMed  Google Scholar 

  25. Don R.H. and Pemberton J.M., 1981, Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol., 145:681–686.

    PubMed  CAS  Google Scholar 

  26. Duineveld B.M., Kowalchuk G.A., Keijzer A., Van Elsas J.D., and Van Veen J.A., 2001, Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol., 67:172–178.

    Article  PubMed  CAS  Google Scholar 

  27. Elasri M., Delorme S., Lemanceau P., Stewart G., Laue B., Glickmann E., Oger P.M., and Dessaux Y., 2001, Acyl-homoserine lactone production is more common among plant-asso-ciated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol., 67:1198–1209.

    Article  PubMed  CAS  Google Scholar 

  28. Ellis R.J., Timms-Wilson T.M., and Bailey M.J., 2000, Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol., 2:274–284.

    Article  PubMed  CAS  Google Scholar 

  29. El Fantroussi S., Verschuere L., Verstraete W, and Top E.M., 1999, Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol., 65:982–988.

    PubMed  Google Scholar 

  30. Engelen B., Meinken K., Van Wintzingerode F., Heuer H., Malkomes H.-R, and Backhaus H., 1998, Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl. Environ. Microbiol., 64:2814–2821.

    PubMed  CAS  Google Scholar 

  31. Espinosa-Urgel M. and Ramos J.L., 2001, Expression of a Pseudomonas putida involved in lysine metabolism is induced in the rhizosphere. Appl. Environ. Microbiol., 67:5219–5224.

    Article  PubMed  CAS  Google Scholar 

  32. Frey P., Frey-Klett P., Garbaye J., Berge O., and Heulin T., 1997, Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolour mycorrhizosphere. Appl. Environ. Microbiol., 63:1852–1860.

    PubMed  CAS  Google Scholar 

  33. Fulthorpe R.R. and Wyndham R.C., 1991, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl. Environ. Microbiol., 57:1546–1553.

    PubMed  CAS  Google Scholar 

  34. Furlong M.A., Singleton D.R., Coleman D.C., and Whitman W.B., 2002, Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol., 68:1265–1279.

    Article  PubMed  CAS  Google Scholar 

  35. Gardener B.B.M., Schroder K.L., Kalloger S.E., Raaijmakers J.M., Thomashaw L., and Weller D.M., 2000, Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol., 66:1939–1946.

    Article  CAS  Google Scholar 

  36. Ghiglione J.-L., Gourbiere F., Potier P., Phillippot L. and Lensi R., 2000, Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl. Environ. Microbiol., 66:4012–4016.

    Article  PubMed  CAS  Google Scholar 

  37. Grimont P.A.D., Vancanneyt M., Lefevre M., Vandemeulebrocke K., Vauterin L., Brosch R., Kersters K., and Grimont F., 1996, Ability of Biolog and Biotype-100 systems to reveal the taxonomic diversity of the pseudomonads. System. Appl. Microbiol., 19:510–527.

    Article  CAS  Google Scholar 

  38. Hansen M., Kragelund L., Nybroe O., and Sørensen J., 1997, Early colonization of barley roots by Pseudomonas fluorescens studies by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol., 23:353–360.

    Article  CAS  Google Scholar 

  39. Hattori R. and Hattori T., 1980, Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol., 26:1–14.

    Article  CAS  Google Scholar 

  40. Højberg O., Schnider U., Winteler H.V, Sorensen J., and Haas D., 1999, Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol., 65:4085–4093.

    PubMed  Google Scholar 

  41. Jaeger C.H., Lindow S.E., Miller W., Clark E., and Firestone M.K., 1999, Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ. Microbiol., 65:2685–2690.

    PubMed  CAS  Google Scholar 

  42. Janse J.D., Derks J.H.J., Spit B.E., and Van der Tuin W.R., 1992, Classification of soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis. Syst. Appl. Microbiol., 15:538–553.

    Article  CAS  Google Scholar 

  43. Jansson J.K., 1998, Marker Genes as Tags for Monitoring Microorganisms in Nature. An Opinion. MAREP (Marker/reporter genes in microbial ecology): A Concerted Action; European Commission Biotechnology Programme, DGXII. Borås, Sweden.

    Google Scholar 

  44. Jensen L.E. and Nybroe O., 1999, Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Appl. Environ. Microbiol., 65:4320–4328.

    PubMed  CAS  Google Scholar 

  45. Jensen M.A., Webster J.A., and Straus N., 1993, Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ. Microbiol., 59:945–952.

    PubMed  CAS  Google Scholar 

  46. Johnsen K., Andersen S.M., and Jacobsen C.S., 1996, Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars. Appl. Environ. Microbiol., 62:3818–3825.

    PubMed  CAS  Google Scholar 

  47. Johnsen K., Enger Ø., Jacobsen C.S., Thirup L., and Torsvik V., 1999, Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl. Environ. Microbiol., 65:1786–1789.

    PubMed  CAS  Google Scholar 

  48. Ka J.O., Holben W.E., and Tiedje J.M., 1994, Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D treated soil. Appl Environ. Microbiol., 60:1106–1115.

    PubMed  CAS  Google Scholar 

  49. Keel C., Weller D.M., Natsch A., Défago G., Cook R.J., and Thomashow L., 1996, Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ. Microbiol., 62:552–563.

    PubMed  CAS  Google Scholar 

  50. Kiyohara H., Takizawa N., and Nagao K., 1992, Natural distribution of bacteria metabolising many kinds of polycyclic aromatic hydrocarbons. J. Ferm. Bioeng., 74:49–51.

    Article  CAS  Google Scholar 

  51. Koch B., Worm J., Jensen L.E., Højberg O., and Nybroe O., 2001, Carbon limitation induces σs-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ. Microbiol., 67:3363–3370.

    Article  PubMed  CAS  Google Scholar 

  52. Kostman J.R., Edlind T.D., Lipuma J.J., and Stull T.L., 1992, Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J. Clin. Microbiol., 30:2084–2087.

    PubMed  CAS  Google Scholar 

  53. Kragelund L., Leopold K., and Nybroe O., 1996, Outer membrane heterogeneity within Pseudomonas fluorescens and P. putida and use of an OprF antibody as a probe for rRNA homology group I pseudomonads. Appl. Environ. Microbiol., 62:480–485.

    PubMed  CAS  Google Scholar 

  54. Kragelund L., Hosbond C., and Nybroe O., 1997, Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol., 63:4920–4928.

    PubMed  CAS  Google Scholar 

  55. Kuiper I., Bloemberg G.V., Noreen S., Thomas-Oates J.E., and Lugtenberg B.J.J., 2001, Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact., 14:1096–1104.

    Article  PubMed  CAS  Google Scholar 

  56. Lambert B., Leyns F., Van Rooyen L., Gosselé F., Papon Y., and Swings J., 1987, Rhizobacteria of maize and their antifungal activities. Appl. Environ. Microbiol., 53:1866–1871.

    PubMed  CAS  Google Scholar 

  57. Lambert B., Meire P., Lens P., and Swings J., 1990, Fast-growing, aerobic, heterotrophic bacteria from the rhizosphere of young sugar beet plants. Appl. Environ. Microbiol., 56:3375–3381.

    PubMed  CAS  Google Scholar 

  58. Landa B.B., Mavrodi O.V., Raaijmakers J.M., McSpadden Gardener B.B., Thomashaw L., and Weller D.M., 2002, Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl. Environ. Microbiol., 68:3226–3237.

    Article  PubMed  CAS  Google Scholar 

  59. Latour X., Corberand T., Laguerre G., Allard F, and Lemanceau P., 1996, The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol., 62:2449–2456.

    PubMed  CAS  Google Scholar 

  60. Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J.-M., and Alabouvette C., 1995, Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl. Environ. Microbiol., 61:1004–1012.

    PubMed  CAS  Google Scholar 

  61. Linne von Berg R.H. and Bothe H., 1992, The distribution of denitrifying bacteria in soils monitored by DNA-probing. Microb. Ecol., 86:331–340.

    Google Scholar 

  62. Locatelli L., Tarnawski S., Hamelin J., Rossi P., Aragno M., and Fromin N., 2002, Specific PCR amplification for the genus Pseudomonas targeting the 3’ half of 16S rDNA and the whole 16S–23S rDNA spacer. Syst. Appl. Microbiol., 25:220–227.

    Article  PubMed  CAS  Google Scholar 

  63. Lugtenberg B.J.J., Dekkers L., and Bloemberg G.V., 2001, Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol., 39:461–490.

    Article  PubMed  CAS  Google Scholar 

  64. Lübeck P.S., Hansen M., and Sørensen J., 2000, Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridisation technique. FEMS Microbiol. Ecol., 33:11–19.

    Article  PubMed  Google Scholar 

  65. Marilley L. and Aragno M., 1999, Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol., 13:127–136.

    Article  Google Scholar 

  66. Marilley L., Hartwig U.A., and Aragno M., 1999, Influence of an elevated atmospheric CO2 content in soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb. Ecol., 38:39–49.

    Article  PubMed  CAS  Google Scholar 

  67. Marschner P. and Crowley D.E., 1996, Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and nonmycorrhizal pepper (Capsicum annuum L.). Soil Biol. Biochem., 28:869–876.

    Article  CAS  Google Scholar 

  68. McCaig A.E., Glover L.A., and Prosser J.L., 1999, Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl. Environ. Microbiol., 65:1721–1730.

    PubMed  CAS  Google Scholar 

  69. McCaig A.E., Grayston S.J., Prosser J.L., and Glover L.A., 2001, Impact of cultivation on characterization of species composition of soil bacterial communities. FEMS Microbiol. Ecol., 35:37–48.

    Article  PubMed  CAS  Google Scholar 

  70. McGowen C., Fulthorpe R., Wrigth A., and Tiedje J.M., 1998, Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl. Environ. Microbiol., 64:4089–4092.

    Google Scholar 

  71. Meikle A., Amin-Hanjani S., Glover L.A., Killham K., and Prosser J.L, 1995, Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil. Soil Biol. Biochem., 27:881–892.

    Article  CAS  Google Scholar 

  72. Misko A.L. and Germida J.J., 2002, Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol. Ecol., 42:399–407.

    Article  PubMed  CAS  Google Scholar 

  73. Moore E.R.B., Mau M., Arnscheidt A., Böttger E.C., Hutson R.A., Collins M.D., Van de Peer Y., De Wschter R., and Timmis K.N., 1996, The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. System. Appl. Microbiol., 19:478–492.

    Article  CAS  Google Scholar 

  74. Nielsen M.N., Sørensen J., Fels J., and Pedersen H.C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol., 64:3563–3569.

    PubMed  CAS  Google Scholar 

  75. Nielsen T.H., Sørensen D., Tobiasen C., Andersen J.B., Christophersen C., Givskov M., and Sørensen J., 2002, Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol., 68:3416–3423.

    Article  PubMed  CAS  Google Scholar 

  76. Palleroni N.J., 1984, Gram-negative aerobic rods and cocci: Family I Pseudomonadaceae. In N.R. Krieg and J.G. Holt (eds), Bergeys Manual of Bacteriology, pp. 3086–3103. Williams and Wilkins Baltimore.

    Google Scholar 

  77. Picard C., Di Cello F., Ventura M., Fani R., and Guckert A., 2000, Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol., 66:948–955.

    Article  PubMed  CAS  Google Scholar 

  78. Porteous F., Killham K., and Meharg A., 2000, Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress. Chemosphere, 41:1549–1554.

    Article  PubMed  CAS  Google Scholar 

  79. Porteous L.A., Widmer F., and Seidler R.J., 2002, Multiple enzyme restriction fragment length polymorphism analysis for high resolution distinction of Pseudomonas (sensu stricto) 16S rRNA genes. J. Microbiol. Meth., 51:337–348.

    Article  CAS  Google Scholar 

  80. Raaijmakers J.M. and Weller D.M., 2001, Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8rl-96. Appl. Environ. Microbiol., 67:2545–2554.

    Article  PubMed  CAS  Google Scholar 

  81. Ramos C., Mølbak L., and Molin S., 2000, Bacterial activity in the rhizosphere analysed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol., 66:801–809.

    Article  PubMed  CAS  Google Scholar 

  82. Ridgway H.F, Safarik J., Phipps D, Carl P., and Clark D., 1990, Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl. Environ. Microbiol., 56:3565–3575.

    PubMed  CAS  Google Scholar 

  83. Ross I.L., Alami Y., Harvey R.R., Achouak W., and Ryder M.H., 2000, Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl Environ. Microbiol., 66:1609–1616.

    Article  PubMed  CAS  Google Scholar 

  84. Rowe M.T. and Finn B., 1991, A study of Pseudomonas fluorescens biovars using the Automated Microbiology Identification System (AMBIS). Lett. Appl. Microbiol., 13:238–242.

    Article  Google Scholar 

  85. Sands D.C. and Rovira A.D., 1971, Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. J. Appl. Bacteriol., 34:261–275.

    Article  PubMed  CAS  Google Scholar 

  86. Sanseverino J., Applegate B.M., King J.M.H., and Sayler G.S., 1993, Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol., 59:1931–1937.

    PubMed  CAS  Google Scholar 

  87. Schleifer K.H., Amann R., Ludwig W., Rothemund C., Springer N., and Dorn S., 1992, Nucleic acid probes for the identification and in situ detection of pseudomonads, pp. 127–134. In E. Galli, S. Silver, and W. Witholt (eds), Pseudomonas: Molecular Biology and Biotechnology. American Society for Microbiology Washington DC.

    Google Scholar 

  88. Schloter M., Lebuhn M., Heulin T., and Hartmann A., 2000, Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev., 24:647–660.

    Article  PubMed  CAS  Google Scholar 

  89. Schmidt-Eisenlohr H. and Baron C., 2003, The competitiveness of Pseudomonas chlororaphis carrying pJP4 is reduced in the Arabidopsis thaliana rhizosphere. Appl. Environ. Microbiol., 69:1827–1831.

    Article  PubMed  CAS  Google Scholar 

  90. Sikorski J., Rossello-Mora R., and Lorenz M.G., 1999, Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. Syst. Appl. Microbiol., 22:393–402.

    Article  PubMed  CAS  Google Scholar 

  91. Sikorski J., Jahr H., and Wackernagel W, 2001, The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ. Microbiol., 3:176–186.

    Article  PubMed  CAS  Google Scholar 

  92. Sikorski J., Teschner N., and Wackernagel W, 2002, Highly different levels of natural trans-formation are associated with genomic subgroups within a local population of Pseudomonas Stutzeri from soil. Appl. Environ. Microbiol., 68:865–873.

    Article  PubMed  CAS  Google Scholar 

  93. Smith L.M., Tola E., deBoer P., and O’Gara F., 1999, Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens Fl 13. Environ. Microbiol., 1:495–502.

    Article  PubMed  CAS  Google Scholar 

  94. Smit E., Leeflang P., Van den Broek J., Van Mil S., and Wernars K., 2001, Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol., 67:2284–2291.

    Article  PubMed  CAS  Google Scholar 

  95. Spiers A.J., Buckling A., and Rainey P.B., 2000, The causes of Pseudomonas diversity. Microbiology, 146:2345–2350.

    PubMed  CAS  Google Scholar 

  96. Standing D., Meharg A.A., and Killham K., 2003, A tripartite microbial reporter gene system for real-time assays of soil nutrient status. FEMS Microbiol Lett., 220:35–39.

    Article  PubMed  CAS  Google Scholar 

  97. Stanier R.Y., Palleroni N.J., and Doudoroff M., 1966, The aerobic Pseudomonads: a taxonomic study. J. Gen. Microbiol., 43:159–271.

    Article  PubMed  CAS  Google Scholar 

  98. Stead D.E., 1992, Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol., 42:281–295.

    Article  CAS  Google Scholar 

  99. Steidle A., Sigl K., Schuhegger R., Ihring A., Schmid M., Gantner S., Stoffels M., Riedel K., Givskov M., Hartmann A., Langebartels C., and Eberl L., 2001, Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere, Appl. Environ. Microbiol., 67:5761–5770.

    Article  PubMed  CAS  Google Scholar 

  100. Sørensen J., Skouv J., Jørgensen A., and Nybroe O., 1992, Rapid identification of environmental isolates of Pseudomonas aeruginosa, P. fluorescens and P. putida by SDS-PAGE analysis of whole-cell protein patterns. FEMS Microbiol. Ecol., 101:41–50.

    Google Scholar 

  101. Sørensen J., 1997, The rhizosphere as a habitat for soil microorganisms. In J.D. van Elsas, J.T. Trevors, and E.M.H. Wellington (eds), Modern Soil Microbiology, pp. 21–45. Marcel Dekker, Inc. New York.

    Google Scholar 

  102. Sørensen J., Jensen L.E., and Nybroe O., 2001, Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil, 232:97–108.

    Article  Google Scholar 

  103. Sørheim R., Torsvik V.L., and Goksoyr I., 1989, Phenotypical divergencies between populations of soil bacteria isolated on different media. Microb. Ecol., 17:181–192.

    Article  Google Scholar 

  104. Tepletski M., Robinson J.B., and Bauer W.D., 2000, Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect density-dependent behaviours in associated bactera. Mol. Plant-Microbe Interact., 13:637–648.

    Article  Google Scholar 

  105. Tesar M., Hoch C., Moore E.R.B., and Timmis K.N., 1996, Westprinting: Development of a rapid immunochemical identification for species within the genus Pseudomonas sensu stricto. System. Appl. Microbiol., 19:577–588.

    Article  CAS  Google Scholar 

  106. Tiedje J.M., Asuming-Brempong S., Nüsslein K., Marsh T.L., and Flynn S.J., 1999, Opening the black box of soil microbial diversity. Appl. Soil Ecol., 13:109–122.

    Article  Google Scholar 

  107. Unge A., Tombolini R., Mølbak L., and Jansson J.K., 1999, Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol., 65:813–821.

    PubMed  CAS  Google Scholar 

  108. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., and Fredrickson H.L., 1996a, Fatty acid content in whole-cell hydrolysates and phopholipid fractions of Pseudomonads: a taxonomic evaluation. System. Appl. Microbiol., 19:528–540.

    Article  CAS  Google Scholar 

  109. Vancanneyt M., Torek U, Dewettinck D, Vaerewijck M., and Kersters K., 1996b, Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst. Appl. Microbiol., 19:556–568.

    Article  CAS  Google Scholar 

  110. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., and Swings J., 1996, Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev., 60:407–438.

    PubMed  CAS  Google Scholar 

  111. van Overbeek L.S., van Elsas J.D., and van Veen J.A., 1997, Pseudomonas fluorescens Tn5-B20 mutant RA92 responds to carbon limitation in soil. FEMS Microbiol. Ecol., 24:57–71.

    Article  Google Scholar 

  112. Van Zyl E. and Steyn P.L., 1990, Differentiation of phytopathogenic Pseudomonas and Xanthomonas species and pahtovars by numerical taxonomy and protein gel electrophoresis. Syst. Appl. Microbiol., 13:60–71.

    Article  Google Scholar 

  113. Wang C., Ramette A., Punjasamarnwong P., Zala M., Natsch A., Moënne-Loccoz Y, and Défago G., 2001, Cosmopolitan distribution of phlD)-containing dicotyledonous cropassociated biocontrol pseudomonads of worldwide origin. FEMS Microbiol. Ecol., 37:105–116.

    Article  CAS  Google Scholar 

  114. Widmer F., Seidler R.J., Gillevet P.M., Watrud L.S., and De Giovanni G.D., 1998, A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl. Environ. Microbiol., 64:2545–2553.

    PubMed  CAS  Google Scholar 

  115. Wilson M.S., Bakermans C., and Madsen E.L., 1999, In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol., 65:80–87.

    PubMed  CAS  Google Scholar 

  116. Yamamoto S., Kasai H., Arnold D.L., Jackson R.W., Vivian A., and Harayama S., 2000, Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology, 146:2385–2394.

    PubMed  CAS  Google Scholar 

  117. Yeomans C., Porteous F., Paterson E., Meharg A.A., and Killham K., 1999, Assessment of lux-marked Pseudomonas fluorescens for reporting on organic carbon compounds. FEMS Microbiol. Lett., 176:79–83.

    Article  CAS  Google Scholar 

  118. Zhang Z.G. and Pierson L.S., 2001, A second quorum sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl. Environ. Microbiol., 67:4305–4315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sørensen, J., Nybroe, O. (2004). Pseudomonas in the Soil Environment. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics