Skip to main content

In Vivo Gene Expression: The IVET System

  • Chapter
Pseudomonas

Abstract

Bacteria of the genus Pseudomonas have been found in quite diverse aerobic environments, their metabolic versatility and capacity to adapt to changing conditions being a major reason for their ubiquity. A classical approach in studies carried out with pseudomonads and other bacteria, has been the analysis of a specific phenotype of interest and the subsequent identification of the gene/s responsible for such character, either by inactivation of a suspect gene or by random mutagenesis. Expression patterns of many genes have been investigated under laboratory conditions, and in vivo gene activity has in some cases been documented. However, as more complex inquiries about the biology of Pseudomonas in specific environments have been undertaken, the limitations of this genetic approach have become apparent. The interactions of bacteria with their environment, or with other organisms, are determined by a number of different factors—not only the bacterium’s particular genetic stock, but also those ofsurrounding bacteria, or ofthe organisms they interact with, as well as physicochemical conditions. Thus, the ecological performance of a bacterium is the result of a combination of intrinsic and external elements, and it is often difficult to assess the role of one particular gene product simply by its inactivation. This is the case in human pathogenesis, plant virulence, and plant protection against infection by pathogens—all conditions involving Pseudomonas sp. In such situations, confirmation of the role of a certain gene in bacterial fitness has quite often required competition studies between wild-type and mutant strains, indicating the existence of genes whose contribution to the adaptation of some bacteria to their natural habitats depends upon their bio-environment. Often these genes have been found to be unimportant for growth in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelichio M.J. and Camilli A., 2002, In vivo expression technology. Infect. Immun., 70:6518–6523.

    Article  PubMed  CAS  Google Scholar 

  2. Boch J., Joardar V., Gao L., Robertson T.L., Lim M. and Kunkel B.N., 2002, Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol. Microbiol., 44:73–88.

    Article  PubMed  CAS  Google Scholar 

  3. Caetano-Annoles G., 1993, Amplifying DNA with arbitrary oligonucleotide primers. PCR. Methods Appl., 3:85–92.

    Google Scholar 

  4. Camilli A., Beattie D.T. and Mekalanos J.J., 1994, Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA., 91:2634–2638.

    Article  PubMed  CAS  Google Scholar 

  5. Collmer A., Badel J.L., Charkowski A.O., Deng W.L., Fouts D.E., Ramos A.R., Rehm A.H., Anderson D.M., Schneewind O., van Dijk K. and Alfano J.R., 2000, Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA., 97:8770–8777.

    Article  PubMed  CAS  Google Scholar 

  6. Espinosa-Urgel M., Salido A. and Ramos J.L., 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol., 182:2363–2369.

    Article  PubMed  CAS  Google Scholar 

  7. Finelli A., Gallant C.V., Jarvi K. and Burrows L.L., 2003, Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 185:2700–2710.

    Article  PubMed  CAS  Google Scholar 

  8. Ha U. and Jin S., 1999, Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of bum wounds in mice and is required to cause efficient bacteremia. Infect. Immun., 67:5324–5331.

    PubMed  CAS  Google Scholar 

  9. Handfield M., Brady L.J., Progulske-Fox A. and Hillman J.D., 2000, IVIAT: A Novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol., 8:336–339.

    Article  PubMed  CAS  Google Scholar 

  10. Handfield M., Lehoux D.E., Sanschagrin E, Mahan M.J., Woods D.E. and Levesque R.C., 2000, In vivo-induced genes in Pseudomonas aeruginosa. Infect. Immun., 68:2359–2362.

    Article  PubMed  CAS  Google Scholar 

  11. Handfield M., Schweizer H.P., Mahan M.J., Sanschagrin F, Hoang T. and Levesque R.C., 1998, ASD-GFP vectors for in vivo expression technology in Pseudomonas aeruginosa and other gram-negative bacteria. Biotechniques, 24:261–264.

    PubMed  CAS  Google Scholar 

  12. Lee S.H., Hava D.L., Waldor M.K. and Camilli A., 1999, Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell, 99:625–634.

    Article  PubMed  CAS  Google Scholar 

  13. Lee S.W and Cooksey D.A., 2000, Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol., 66:2764–2772.

    Article  PubMed  CAS  Google Scholar 

  14. Mahan M.J., Slauch J.M. and Mekalanos J.J., 1993, Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 259:686–688.

    Article  PubMed  CAS  Google Scholar 

  15. . Mahan M.J., Tobias J. W., Slauch J.M., Hanna P.C., Collier R.J. and Mekalanos J.J., 1995, Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA., 92:669–673.

    Article  PubMed  CAS  Google Scholar 

  16. Osbourn A.E., Barber C.E. and Daniels M.J., 1987, Identificataion of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoterprobe plasmid. EMBO J., 6:23–28.

    PubMed  CAS  Google Scholar 

  17. O’Toole G.A., 2003, To build a biofilm. J. Bacteriol., 185:2687–2689.

    Article  PubMed  Google Scholar 

  18. Peñaloza-Vazquez A., Preston G.M., Collmer A. and Bender C.L., 2000, Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology, 146:2447–2456.

    PubMed  Google Scholar 

  19. Preston G.M., Bertrand N. and Rainey P.B., 2001, Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol., 41:999–1014.

    Article  PubMed  CAS  Google Scholar 

  20. Rahrne L.G., Tan M.W, Le L., Wong S.M., Tompkins R.G., Calderwood S.B. and Ausubel F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA., 94:13245–13250.

    Article  Google Scholar 

  21. Rainey P.B., 1999, Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol., 1:243–257.

    Article  PubMed  CAS  Google Scholar 

  22. Rainey P.B., Heithoff D.M. and Mahan M.J., 1997, Single-step conjugative cloning of bacterial gene fusions involved in microbe-host interactions. Mol. Gen. Genet., 256:84–87.

    Article  PubMed  CAS  Google Scholar 

  23. Rainey P.B. and Preston G.M., 2000, In vivo expression technology strategies: Valuable tools for biotechnology. Curr. Opin. Biotechnol., 11:440–444.

    Article  PubMed  CAS  Google Scholar 

  24. Ramos-González M.I. and Ramos J.L. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere. In preparation.

    Google Scholar 

  25. Ronchel M.C. and Ramos J.L., 2001, Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol., 67:2649–2656.

    Article  PubMed  CAS  Google Scholar 

  26. Slauch J.M., Mahan M.J. and Mekalanos J.J., 1994, Measurement of transcriptional activity in pathogenic bacteria recovered directly from infected host tissue. Biotechniques 16:641–644.

    PubMed  CAS  Google Scholar 

  27. Staskawicz B.J., Mudgett M.B., Dangl J.L. and Galan J.E., 2001, Common and contrasting themes of plant and animal diseases. Science, 292:2285–2289.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao Y., Heu S., Vi J., Lu Y. and Hutcheson S.W, 1994, Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol., 176:1025–1036.

    PubMed  CAS  Google Scholar 

  29. Xiao Y. and Hutcheson S.W, 1994, A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol., 176: 3089–3091.

    PubMed  CAS  Google Scholar 

  30. Wang J., Lory S., Ramphal R. and Jin S., 1996, Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol., 22:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  31. Wang J., Mushegian A., Lory S. and Jin S., 1996, Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA., 93:10434–10439.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Espinosa-Urgel, M., Ramos-González, M.I. (2004). In Vivo Gene Expression: The IVET System. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics