Skip to main content

Molecular Tools for Genetic Analysis of Pseudomonads

  • Chapter
Pseudomonas

Abstract

The genomes of several pseudomonads, including Pseudomonas aeruginosa 65, P. putida 110, P. syringae (http://www.tigr.org), and P. fluorescens (http://www.sanger.ac.uk), have been entirely sequenced. To take advantage of the wealth of information revealed by these sequences and especially to reveal the role of the many orphan genes contained in these genomes, versatile tools are needed to gain access to their biological functions. Such tools include cloning and expression plasmids, rapid methods for cloning of large DNA segments, allele replacement vectors, tools for development of host strains for cloning and expression vectors, reporter genes for gene regulation studies, and vectors for integration of extraneous DNA (including reporter genes, regulatory elements, biosensors, etc.) into the chromosome. The growing availability of genomes facilitates genome-wide gene identification projects using insertion mutagenesis, genetic surveys of gene families involved in complex phenotypes and comparative genome analyses of different strains. Although the arsenal of genetic tools available for genetic analysis of pseudomonads has steadily grown and improved over the last decade, many of them still need improvement to complement other modem tools available for genomic analysis, including microarray and proteomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerley B.J. and Lampe D.J., 2002, Analysis of gene function in bacterial pathogens by GAMBIT. Methods Enzymol., 358:100–108.

    PubMed  CAS  Google Scholar 

  2. Alexeyev MF., 1995, Three kanamycin resistance gene cassettes with different polylinkers. BioTechniques, 18:52–56.

    PubMed  CAS  Google Scholar 

  3. Alexeyev M.F. and Shokolenko I.N., 1995, RP4 oriT and RP4 oriT-R6K oriV DNA cassettes for construction of specialized vectors. BioTechniques, 19:22–26.

    PubMed  CAS  Google Scholar 

  4. Alexeyev MF., Shokolenko I.N., and Croughan T.P., 1995, Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene, 160:63–67.

    PubMed  CAS  Google Scholar 

  5. Antoine R. and Locht C., 1992, Isolation and molecular characterization of a novel broadhost-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol. Microbiol., 6:1785–1799.

    PubMed  CAS  Google Scholar 

  6. Bao Y., Lies D.P., Fu H., and Roberts G.P., 1991, An improved Tn7-based system for the single-copy insertion of cloned genes into the chromosomes of Gram-negative bacteria. Gene, 109:167–168.

    PubMed  CAS  Google Scholar 

  7. Barekzi N., Beinlich K., Hoang T.T., Pham X.Q., Karkhoff-Schweizer R.R., and Schweizer H.P., 2000, High-frequency Flp recombinase-mediated inversions of the oriC-containing region of the Pseudomonas aeruginosa genome. J. Bacteriol., 182:7070–7074.

    PubMed  CAS  Google Scholar 

  8. Bernard P., 1995, New ccdB positive-selection cloning vectors with kanamycin or chioramphenicol selectable markers. Gene, 162:159–160.

    PubMed  CAS  Google Scholar 

  9. Bernard P., 1996, Positive selection of recombinant DNA by CcdB. BioTechniques, 21:320–323.

    PubMed  CAS  Google Scholar 

  10. Bernard P. and Couturier M., 1992, Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. I Mol. Biol., 226:735–745.

    CAS  Google Scholar 

  11. Bernard P., Gabant P., Bahassi EM., and Couturier M., 1994, Positive selection vectors using the F plasmid ccdB killer gene. Gene, 148:71–74.

    PubMed  CAS  Google Scholar 

  12. Bertani I., Devescovi G., and Venturi V., 1999, Controlled specific expression and purification of 6xHis-tagged proteins in Pseudomonas. FEMS Microbiol. Lett., 179:101–106.

    PubMed  CAS  Google Scholar 

  13. Blatny J.M., Brautaset T., Winther-Larsen H.C., Haugan K., and Valla S., 1997, Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl. Environ. Microbiol., 63:370–379.

    PubMed  CAS  Google Scholar 

  14. Blatny J.M., Brautaset T., Winther-Larsen H.C., Karunakaran P., and Valla S., 1997, Improved broad-host-range RK2 vectors for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid, 38:35–51.

    PubMed  CAS  Google Scholar 

  15. Boch J., Joardar V., Gao L., Robertson T.L., Lim M., and Kunkel B.N., 2002, Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol. Microbiol., 44:73–88.

    PubMed  CAS  Google Scholar 

  16. Bolton A.J. and Woods D.E., 2000, Self-cloning minitransposon phoA gene-fusion system promotes the rapid genetic analysis of secreted proteins in gram-negative bacteria. BioTechniques, 29:470–474.

    PubMed  CAS  Google Scholar 

  17. Brunschwig E. and Darzins A., 1992, A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa. Gene, 111:35–41.

    PubMed  CAS  Google Scholar 

  18. Caruso M. and Shapiro J.A., 1982, Interactions of Tn7 and temperate phage F166L of Pseudomonas aeruginosa. Mol. Gen. Genet., 188:292–298.

    PubMed  CAS  Google Scholar 

  19. Cebolla A., Guzman C., and de Lorenzo V., 1996, Nondisruptive detection of catabolic promoters of Pseudomonas putida with an antigenic surface reporter system. Appl. Environ. Microbiol., 62:214–220.

    PubMed  CAS  Google Scholar 

  20. Chebrou H., Hurtubise Y., Barriault D., and Sylvestre M., 1999, Heterologous expression and characterization of the purified oxygenase component of Rhodococcus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J. Bacteriol., 181:4804–4811.

    Google Scholar 

  21. Choi J.Y., Sifri C.D., Goumnerov B.C., Rahme L.G., Ausubel F.M., and Calderwood S.B., 2002, Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J. Bacteriol., 184:952–961.

    PubMed  CAS  Google Scholar 

  22. Christensen B.B., Sternberg C., Andersen J.B., Palmer R.J., Nielsen A.T., Givskov M., and Molin S., 1999, Molecular tools for study of biofilm physiology. Methods Enzymol., 310:20–42.

    PubMed  CAS  Google Scholar 

  23. Chuanchuen R., Narasaki C.T., and Schweizer H.P., 2002, The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J. Bacteriol., 184:5036–5044.

    PubMed  CAS  Google Scholar 

  24. Chuanchuen R., Narasaki C.T., and Schweizer H.P., 2002, Rapid benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. BioTechniques, 33:761–763.

    Google Scholar 

  25. Chung J.W, Webster D.A., Pagilla K.R., and Stark B.C., 2001, Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J. Ind. Microbiol. Biotechnol., 27:27–33.

    PubMed  CAS  Google Scholar 

  26. Collier D.N., Spence C., Cox M.J., and Phibbs P.V, 2001, Isolation and phenotypic characterization of Pseudomonas aeruginosa pseudorevertants containing suppressors of the catabolite repression control-defective crc-10 allele. FEMS Microbiol. Lett., 196:87–92.

    PubMed  CAS  Google Scholar 

  27. Couch R., Seidle H., and Parry R., 2002, Construction of expression vectors to produce affinity-tagged proteins in Pseudomonas. BioTechniques, 32:1230–1236.

    PubMed  CAS  Google Scholar 

  28. Craig N.L., 1989, Transposon Tn7. In D.E. Berg and M.M. Howe (eds), Mobile DNA, pp. 211–225. American Society for Microbiology Washington, DC.

    Google Scholar 

  29. Craig N.L., 1996, Transposon Tn7. Curr. Top. Microbiol. Immunol., 204:27–48.

    PubMed  CAS  Google Scholar 

  30. Cronin C.N. and McIntire W.S., 1999, pUCP-Nco and pUCP-Nde: Escherichia-Pseudomonas shuttle vectors for recombinant protein expression in Pseudomonas. Anal. Biochem., 272:112–115.

    PubMed  CAS  Google Scholar 

  31. Dandie C.E., Thomas S.M., and McClure N.C., 2001, Comparison of a range of green fluorescent protein-tagging vectors for monitoring a microbial inoculant in soil. Lett. Appl. Microbiol., 32:26–30.

    PubMed  CAS  Google Scholar 

  32. Darzins A. and Casadaban M.J., 1989, In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage. J. Bacteriol., 171:3917–3925.

    PubMed  CAS  Google Scholar 

  33. Datsenko K.A. and Wanner B.L., 2000, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA, 97:6640–6645.

    PubMed  CAS  Google Scholar 

  34. Davison J., 2002, Genetic tools for Pseudomonads, Rhizobia, and other Gram-negative bacteria. BioTechniques, 32:386–401.

    PubMed  CAS  Google Scholar 

  35. Davison J., Chevalier N., and Brunel F., 1989, Bacteriophage T7 RNA polymerasecontrolled specific gene expression in Pseudomonas. Gene, 83:371–375.

    PubMed  CAS  Google Scholar 

  36. Davison J., Heusterspreute M., and Brunel F., 1987, Restriction site bank vectors for cloning in gram-negative bacteria and yeast. Methods Enzymol, 153:34–54.

    PubMed  CAS  Google Scholar 

  37. Davison J., Heusterspreute M., Chevalier N., and Brunel F., 1987, A “phase-shift” fusion system for the regulation of foreign gene expression by lambda repressor in gram-negative bacteria. Gene, 60:227–35.

    PubMed  CAS  Google Scholar 

  38. Davison J., Heusterspreute M., Chevalier N., Ha-Thi V., and Brunel F., 1987, Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene, 51:275–80.

    PubMed  CAS  Google Scholar 

  39. de Lorenzo V., 1994, Designing microbial systems for gene expression in the field. Trends Biotechnol., 12:365–371.

    PubMed  Google Scholar 

  40. de Lorenzo V., 1992, Genetic engineering strategies for environmental applications. Curr. Opin. Biotechnol., 3:227–231.

    PubMed  Google Scholar 

  41. de Lorenzo V., Eltis L., Kessler B., and Timmis K.N., 1993, Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene, 123:17–24.

    PubMed  Google Scholar 

  42. de Lorenzo V., Herrero M., Jakubzik U., and Timmis K.N., 1990, Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative bacteria. J. Bacteriol., 172:6568–6572.

    PubMed  Google Scholar 

  43. de Lorenzo V., Herrero M., Sánchez J.M., and Timmis K.N., 1998, Mini-transposons in microbial ecology and enviromnental biotechnology. FEMS Microbiol. Ecol., 27:211–224.

    Google Scholar 

  44. de Lorenzo V. and Timmis K.N., 1994, Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived transposons. Methods Enzymol, 235:386–405.

    PubMed  CAS  Google Scholar 

  45. DeBoy R.T. and Craig N.L., 2000, Target site selection by Tn7: attTn7 transcription and target Activity. J. Bacteriol., 182:3310–3313.

    PubMed  CAS  Google Scholar 

  46. del Solar G., Giraldo R., Ruiz-Echevarria M.J., Espinosa M., and Diaz-Orejas R., 1998, Replication and control of circular bacterial plasmids. Microbial. Mol. Biol. Rev., 62:434–464.

    Google Scholar 

  47. Dennis J.J. and Sokol P.A., 1995, Electrotransformation of Pseudomonas. In J.A. Nickoloff (ed.), Methods in Molecular Biology, Electroporation Protocols for Microorganisms, Vol. 47, pp. 125–133. Humana Press Inc. Totowa, NJ.

    Google Scholar 

  48. Dennis J.J. and Zylstra G.J., 1998, Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environment. Microbiol. 64:2710–2715.

    CAS  Google Scholar 

  49. Deshazer D. and Woods D.E., 1996, Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. BioTechniques, 20:762–764.

    PubMed  CAS  Google Scholar 

  50. di Guan C., Li P., Riggs P.D., and Inouye H., 1988, Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene, 67:21–30.

    PubMed  Google Scholar 

  51. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.-W., Finlay D.R., Guiney D., and Helinski D.R., 1985, Plasmids related to the broad host range vector, pRK29O, useful for gene cloning and for monitoring gene expression. Plasmid, 13:149–153.

    PubMed  CAS  Google Scholar 

  52. Donnenberg M.S. and Kaper J.B., 1991, Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun., 59:4310–4317.

    PubMed  CAS  Google Scholar 

  53. Farinha M.A. and Kropinski A.M., 1990, Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol., 172:3496–3499.

    PubMed  CAS  Google Scholar 

  54. Farinha M.A. and Kropinski A.M., 1989, Construction of broad-host-range vectors for general cloning and promoter selection in Pseudomonas and Escherichia coli. Gene, 77:205–210.

    PubMed  CAS  Google Scholar 

  55. Figurski D.H. and Helinski D.R., 1979, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA, 76:1648–1652.

    PubMed  CAS  Google Scholar 

  56. Francia M.V., de la Cruz F., and Garcia Lobo J.M., 1993, Secondary-sites for integration mediated by the Tn21 integrase. Mol. Microbiol., 10:823–8.

    PubMed  CAS  Google Scholar 

  57. Francia M.V. and Garcia Lobo J.M., 1996, Gene integration in the Escherichia coli chromosome mediated by Tn21 integrase (Int21). J. Bacteriol., 178:894–8.

    PubMed  CAS  Google Scholar 

  58. Fürste J.P., Pansegrau W., Frank R., Bloecker H., Scholz P., Bagdasarian M., and Lanka E., 1986, Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene, 48:119–131.

    PubMed  Google Scholar 

  59. Gambello M.J. and Iglewski B.H., 1991, Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol., 173:3000–3009.

    PubMed  CAS  Google Scholar 

  60. Garraway L.A., Tosi L.R., Wang Y., Moore J.B., Dobson D.E., and Beverley S.M., 1997, Insertional mutagenesis by a modified in vitro Tyl transposition system. Gene, 198:27–35.

    PubMed  CAS  Google Scholar 

  61. Goryshin I.Y., Jendrisak J., Hoffman L., Meis R., and Reznikoff W.S., 2000, Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nature Biotechnol., 18:97–100.

    CAS  Google Scholar 

  62. Graupner S. and Wackernagel W., 2000, A broad-host-range expression vector series including a Ptac test plasmid and its application in the expression of the dod gene of Serratia marcescens (coding for ribulose-5-phosphate 3-epimerase) in Pseudomonas stutzeri. Biomol. Eng., 17:11–16.

    PubMed  CAS  Google Scholar 

  63. Guzman L.-M., Belin D., Carson M.J., and Beckwith J., 1995, Tight regulation, modulation, and high-level expression by vectors containing the arabinose BAD promoter. J. Bacteriol., 177:4121–4130.

    PubMed  CAS  Google Scholar 

  64. Handfield M., Schweizer H.P., Mahan M.J., Sanschagrin F., Hoang T., and Levesque R.C., 1998, ASD-GFP vectors for in viva expression technology in Pseudomonas aeruginosa and other Gram-negative bacteria. BioTechniques, 24:261–264.

    PubMed  CAS  Google Scholar 

  65. Hansen L.H. and Sorensen S.J., 2000, Detection and quantification of tetracyclines by whole biosensors. FEMS Microbial. Lett., 190:273–278.

    CAS  Google Scholar 

  66. Hansen L.H. and Sorensen S.J., 2000, Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol. Lett., 193:123–127.

    PubMed  CAS  Google Scholar 

  67. Hayashi T., Matsumoto H., Ohnishi M., and Terawaki Y., 1993, Molecular analysis of a cytotoxin-converting phage, Φ;CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol. Microbiol., 7:657–667.

    PubMed  CAS  Google Scholar 

  68. Heeb S., Itoh Y, Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O’Gara E, and Haas D., 2000, Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant. Microbe Interact., 13:232–237.

    PubMed  CAS  Google Scholar 

  69. Hensel M., Shea J.E., Gleeson C., Jones M.D., Dalton E., and Holden D.W, 1995, Simultaneous identification of bacterial virulence genes by negative selection. Sciences, 269:400–403.

    CAS  Google Scholar 

  70. Herrero M., de Lorenzo V., Ensley B., and Timmis K.N., 1993, A T7 RNA polymerasebased system for the construction of Pseudomonas strains with phenotypes dependent on TOL-meta pathway effectors. Gene, 134:103–106.

    PubMed  CAS  Google Scholar 

  71. Hoang T.T., Karkhoff-Schweizer R.R., Kutchma AJ., and Schweizer H.P., 1998, A broadhost-range Flp-FRT recombination system for site-specific excision of chromosomallylocated DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene, 212:77–86.

    PubMed  CAS  Google Scholar 

  72. Hoang T.T., Kutchma AJ., Becher A., and Schweizer H.P., 2000, Integration proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid, 43:59–72.

    PubMed  CAS  Google Scholar 

  73. Hoffman L.M., Jendrisak J.J., Meis RJ., Goryshin I.Y., and Reznikoff S.W., 2000, Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica, 108:19–24.

    PubMed  CAS  Google Scholar 

  74. Hojberg O., Schnider U., Winteler H.V., Sorensen J., and Haas D., 1999, Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environm. Microbiol., 65:4085–4093.

    CAS  Google Scholar 

  75. Holtwick R., von Wallbrunn A., Keweloh H., and Meinhardt E, 2001, A novel rollingcircle-replicating plasmid from Pseudomonas putida P8: molecular characterization and use as vector. Microbiology, 147:337–344.

    PubMed  CAS  Google Scholar 

  76. Hoh Y, Watson J.M., Haas D., and Leisinger T., 1984, Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid, 11:206–220.

    Google Scholar 

  77. Jang S.J., Park W.J., Chung S.-K., Jeong C.Y., and Chung D.K., 2001, New E. coli cloning vector using a cellulase gene (ceIA) as a screening marker. Bio Techniques, 31:1064–1067.

    CAS  Google Scholar 

  78. Kagle J. and Hay A., 2002, Construction of a broad host range cloning vector conferring triclosan resistance. Bio Techniques, 33:491–492.

    Google Scholar 

  79. Kalogeraki V.S. and Winans S.C., 1997, Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene, 188:69–75.

    PubMed  CAS  Google Scholar 

  80. Kalyaeva E., Bass I., Kholodii G., and Nikiforov V., 2002, A broad host range plasmid vector that does not encode replication proteins. FEMSMicrobiol. Lett., 211:91–95.

    CAS  Google Scholar 

  81. Kaniga K. and Davison J., 1991, Transposon vectors for stable chromosomal integration of cloned genes in rhizosphere bacteria. Gene, 100:201–205.

    PubMed  CAS  Google Scholar 

  82. Kaniga K., Delor I., and Comelis G.R., 1991, A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the bla gene of Yersinia enterocolitica. Gene, 109:137–141.

    PubMed  CAS  Google Scholar 

  83. Karkhoff-Schweizer R.R. and Schweizer H.P., 1994, Utilization of mini-Dlac transposable element to create an alpha-complementation and regulated expression system for molecular cloning in Pseudomonas aeruginosa. Gene, 140:7–15.

    PubMed  CAS  Google Scholar 

  84. Keen N.T., Tamaki S., Kobayashi D., and Trollinger D., 1988, Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene, 70:191–197.

    PubMed  CAS  Google Scholar 

  85. Kessler B., de Lorenzo V., and Timmis K.N., 1992, A general system 0 integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all control elements in monocopy. Mol. Gen. Genet., 233:293–301.

    PubMed  CAS  Google Scholar 

  86. Koch B., Jensen L.E., and Nybroe O., 2001, A panel of Tnl-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria. J. Mirobiol. Methods, 45:187–195.

    CAS  Google Scholar 

  87. Kok M., Rekik M., Witholt B., and Harayama S., 1994, Conversion of pBR322-based plasmids into broad-host-range vectors by using the Tn3 transposition mechanism. J. Bacteriol., 176:6566–6571.

    PubMed  CAS  Google Scholar 

  88. Konyecsni W.M. and Deretic V., 1988, Broad-host-range plasmid and M13 bacteriophagederived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa. Gene, 74:375–386.

    PubMed  CAS  Google Scholar 

  89. Kovach M.E., Elzer P.H., Hill D.S., Robertson G.T., Farris M.A., Roop R.M., and Peterson K.M., 1995, Four new derivatives of the broad-host-range cloning vectors pBBRIMCS carrying different antibiotic-resistance cassettes. Gene, 166:175–176.

    PubMed  CAS  Google Scholar 

  90. Kovach M.E., Phillips R.W, Elzer P.H., Roop R.M., 2nd, and Peterson K.M., 1994, pBBRIMCS: A broad-host-range cloning vector. Bio Techniques, 16:800–802.

    CAS  Google Scholar 

  91. Kristensen C.S., Eberl L., Sanchez-Romero I.M., Givskov M., Molin S., and de Lorenzo, V., 1995, Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP. J. Bacteriol., 177:52–58.

    PubMed  CAS  Google Scholar 

  92. Kutchma AJ., Hoang T.T., and Schweizer H.P., 1999, Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A: ACP transacylase (FabD). J. Bacteriol., 181:5498–5504.

    PubMed  CAS  Google Scholar 

  93. Labes M., Piihler A., and Simon R., 1990, A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene, 89:37–46.

    PubMed  CAS  Google Scholar 

  94. Lampe DJ., Akerley B.J., Rubin E.J., Meka1anos J.J., and Robertson H.M., 1999, Hyperactive transposase mutants of the Himarl mariner transposon. Proc. Natl. Acad. Sci. USA, 96:11428–11433.

    PubMed  CAS  Google Scholar 

  95. Lee S.W and Cooksey D.A., 2000, Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol., 66:2764–2772.

    PubMed  CAS  Google Scholar 

  96. Leemans R., Remaut E., and Fiers W., 1987, A broad-host-range expression vector based on the P L promoter of coliphage X-: Regulated synthesis of human interleukin 2 in Erwinia and Serratia species. J. Bacteriol., 169:1899–1904.

    PubMed  CAS  Google Scholar 

  97. Lehoux D.E. and Levesque R.C., 2000, Detection of genes essential in specific niches by signature-tagged mutagenesis. Curro Opin. Biotechnol., 11:434–439.

    CAS  Google Scholar 

  98. Lehoux D.E., Sanschagrin E, and Levesque R.C., 2001, Discovering essential and infection-related genes. Curro Opin. Microbiol., 4:515–519.

    CAS  Google Scholar 

  99. Lewenza S., Conway B., Greenberg E.P., and Sokol P, 1999, Quorum sensing in Burkholderia cepacia: Identification of the LuxRI homo1ogs CepRI. J. Bacteriol., 181:748–756.

    PubMed  CAS  Google Scholar 

  100. Lindgren P.B., Frederick R., Govindarjan A.G., Panopoulos NJ., Staskawicz BJ., and Lindow S.E., 1989, An ice nucleation reporter gene system: Identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolica. EMBOJ., 8:1291–1301.

    CAS  Google Scholar 

  101. Lu S.E., Scholz-Schroeder B.K., and Gross D.C., 2002, Construction of pMEKmI2, an expression vector for protein production in Pseudomonas syringae. FEMS Microbiol. Lett., 210: 115–121.

    PubMed  CAS  Google Scholar 

  102. Maina C.V., Riggs P.D., Grandea A.G. R., Slatko B.E., Moran L.S., Tagliamonte I.A., McReynolds L.A., and Guan C.D., 1988, An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene, 74:365–373.

    PubMed  CAS  Google Scholar 

  103. Manoil C., 2000, Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol., 326:35–47.

    PubMed  CAS  Google Scholar 

  104. Marsch-Moreno R., Hernandez-Guzman G., and Alvarez-Morales A., 1998, pTn5-cat: a Tn5-derived genetic element to facilitate insertion mutagenesis, promoter probing, physical mapping, cloning and marker exchange in phytopathogenic and other gram-negative bacteria. Plasmid, 39:205–214.

    PubMed  CAS  Google Scholar 

  105. Martinez-Morales E, Borges A.C., Martinez A., Shanmugam K.T., and Ingraham L.O., 1999, Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons during construction. J Bacteriol., 181:7143–7148.

    PubMed  CAS  Google Scholar 

  106. Matthysse A.G., Stretton S., Dandie C., McClure N.C., and Goodman A.E., 1996, Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol. Lett., 145:87–94.

    PubMed  CAS  Google Scholar 

  107. McKnown R.L., Orle K.A., Chen T., and Craig N.L., 1988, Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol., 170:352–358.

    Google Scholar 

  108. Miller P.L. and Mekalanos J.J., 1988, A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol., 170:2575–2583.

    PubMed  CAS  Google Scholar 

  109. Miller WG., Leveau J.H., and Lindow S.E., 2000, Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant Microbe Interact, 13:1243–1250.

    PubMed  CAS  Google Scholar 

  110. Nelson K.E., Weinel C., Paulsen LT., Dodson R.I., Hilbert H., Martins dos Santos, V.A.P., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy, R.T., Daugherty S., Kolonay J., Madupu R., Nelson W., White D., Peterson J., Khouri, H., Hance I., Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee L., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Duesterhoeft A., Tummler B., and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ. Microbiol., 4:799–808.

    CAS  Google Scholar 

  111. Newman J.R. and Fuqua C., 1999, Broad-host-range expression vectors that carry the Larabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene, 227:197–203.

    PubMed  CAS  Google Scholar 

  112. Ochsner U.A., Vasil A.I., Johnson Z., and Vasil M.L., 1999, Pseudomonas aeruginosafur overlaps with a gene encoding a novel outer membrane lipoprotein, OmIA. J Bacteriol., 181:1099–1109.

    PubMed  CAS  Google Scholar 

  113. Olsen R.H., DeBusscher G., and McCombie WR., 1982, Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol., 150:60–69.

    PubMed  CAS  Google Scholar 

  114. O’Toole G.A. and Kolter R., 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol., 28:449–461.

    PubMed  Google Scholar 

  115. O’Toole G.A., Pratt L.A., Watnick P.L, Newman D.K., Weaver V.B., and Kolter R., 1999, Genetic approaches to study ofbiofilms. Methods Enzymol., 310:91–109.

    PubMed  Google Scholar 

  116. Ouahrani-Bettache S., Porte E, Teyssier J., Liautard J.P., and Kohler S., 1999, pBBRlGFP: A broad-host-range vector for prokaryotic promoter studies. BioTechniques, 26:620–622.

    PubMed  CAS  Google Scholar 

  117. Panke S., Sanchez-Romero J.M., and de Lorenzo V., 1998, Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through an ortho-cleavage degradation pathway. Appl. Environ. Microbiol., 64:748–751.

    PubMed  CAS  Google Scholar 

  118. Pansegrau W, Lanka E., Barth P.T., Figurski D.H., Guiney D.G., Haas D., Helinski D.R., Schwab H., Stanisich V.A., and Thomas C.M., 1994, Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol. Biol., 239:623–663.

    PubMed  CAS  Google Scholar 

  119. Pierre B., Philippe C., and Jean-Paul A., 1985, Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J Bacteriol., 162:102–105.

    Google Scholar 

  120. Prentki P, 1992, Nucleotide sequence of the classical lacZ deletion ΔM15. Gene, 122:231–232.

    PubMed  CAS  Google Scholar 

  121. Preston G.M., Bertrand N., and Rainey P.B., 2001, Type III secretion in plant growthpromoting Pseudomonasjiuorescens SBW25. Mol. Microbiol., 41:999–1014.

    PubMed  CAS  Google Scholar 

  122. Priebe G.P., Brinig M.M., Hatano K., Grout M., Coleman F.T., Pier G.B., and Goldberg, J.B., 2002, Construction and deletion of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect. Immun., 70:1507–1517.

    PubMed  CAS  Google Scholar 

  123. Raaijmakers J.M., Bitter W., Punte H.L., Bakker P.A., Weisbeek P.J., and Schippers B., 1994, Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl. Environ. Microbiol., 60:1184–1190.

    PubMed  CAS  Google Scholar 

  124. Rainey P.B., 1999, Adaptation of Pseudomonas jiuorescens to the plant rhizosphere. Environ. Microbiol., 1:243–257.

    CAS  Google Scholar 

  125. Rainey P.B., Heithoff D.M., and Mahan M.J., 1997, Single-step conjugative cloning ofbacterial gene fusions involved in microbe-host interactions. Mol. Gen. Genet., 256:84–87.

    PubMed  CAS  Google Scholar 

  126. Rainey P.B. and Preston G.M., 2000, in vivo expression technology strategies: valuable tools for biotechnology. Curr. Opinion Biotechnol., 11:440–444.

    CAS  Google Scholar 

  127. Ramos C., Molina L., Molbak L., Ramos J.L., and Molin S., 2000, A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microb. Ecol., 34:91–102.

    CAS  Google Scholar 

  128. Ramos J.L., Gonzalez-Carrero M., and Timmis K.N., 1988, Broad-host-range expression vectors containing manipulated meta-cleavage pathway regulatory elements of the TOL plasmid. FEBS Lett., 226:241–246.

    PubMed  CAS  Google Scholar 

  129. Ratliff M., Zhu W., Deshmukh R., Wilks A., and Stojiljkovic I., 2001, Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol., 183:6394–6403.

    PubMed  CAS  Google Scholar 

  130. Raymond C.K., Sims E.H., Kas A., Spencer D.H., Kutyavin T.V., Ivey R.G., Zhou Y., Kaul R., Clendenning J.B., and Olson M.V., 2002, Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol., 184:3614–3622.

    PubMed  CAS  Google Scholar 

  131. Raymond C.K., Sims E.H., and Olson M.V., 2002, Linker-mediated recombinational cloning of large DNA fragments using yeast. Genome Res., 12:190–197.

    PubMed  CAS  Google Scholar 

  132. Rist M. and Kertesz M.A., 1998, Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 169:179–183.

    PubMed  CAS  Google Scholar 

  133. Ronald S.L., Kropinski A.M., and Farinha M.A., 1990, Construction of broad-host-range vectors for the selection of divergent promoters. Gene, 90:145–148.

    PubMed  CAS  Google Scholar 

  134. Ronchel M.C., Ramos-Diaz M.A., and Ramos J.L., 2000, Retrotransfer of DNA in the rhizosphere. Environ Microbiol, 2:319–23.

    PubMed  CAS  Google Scholar 

  135. Rothmel R.K., Chakrabarty A.M., Berry A., and Darzins A., 1991, Genetic systems in Pseudomonas. Methods Enzymol., 204:485–514.

    PubMed  CAS  Google Scholar 

  136. Rubin E.J., Akerley B.J., Novik V.N., Lampe D.J., Husson R.N., and Mekalanos J.J., 1999, In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA, 96: 1645-1650.

    Google Scholar 

  137. Sanchez-Romero J.M., Diaz-Orejas R., and de Lorenzo V., 1998, Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl. Environ. Microbiol., 64:4040–4046.

    PubMed  CAS  Google Scholar 

  138. Sanchez-Romero J.M. and de Lorenzo V., 1999, Genetic Engineering of Non-Pathogenic Pseudomonas Strains as Biocatalysts for Industrial and Environmental Processes, pp. 460–474. American Association of Microbiology Press Washington DC.

    Google Scholar 

  139. Santos P.M., Di Bartolo I., Blatny J.M., Zennaro E., and Valla S., 2001, New broadhost-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol. Lett., 195:91–96.

    PubMed  CAS  Google Scholar 

  140. Schaefer A., Tauch A., Jager W, Kalinowski J., Thierbach G., and Pooler A., 1994, Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145:69–73.

    CAS  Google Scholar 

  141. Schenborn E. and Groskreutz D., 1999, Reporter gene vectors and assays. Mol. Biotechnol., 13:29–44.

    PubMed  CAS  Google Scholar 

  142. Scholz. P, Haring V., Wittmann-Liebold B., Ashman K., Bagdasarian M., and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSFI0I0. Gene, 75:271–288.

    PubMed  CAS  Google Scholar 

  143. Schweizer H.P., 1991, The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J. Bacteriol., 173:6798–6806.

    PubMed  CAS  Google Scholar 

  144. Schweizer H.P., 1992, Allelic exchange in Pseudomonas aeruginosa using novel ColE1type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillussubtilissac B marker. Mol. Microbiol., 6:1195–1204.

    PubMed  CAS  Google Scholar 

  145. Schweizer H.P., 2003, Applications of the Saccharomyces cerevisiae FlplFRT system in bacterial genetics. J. Mol. Microbiol. Biotechnol., 5:67–77.

    PubMed  CAS  Google Scholar 

  146. Schweizer H.P., 1991, Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene, 97:109–112.

    PubMed  CAS  Google Scholar 

  147. Schweizer H.P., 1991, Improved broad-host-range lac-based plasmid vectors for the isolation and characterization of protein fusions in Pseudomonas aeruginosa. Gene, 103:87–92.

    PubMed  CAS  Google Scholar 

  148. Schweizer H.P., 1993, Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. Gene, 134:89–91.

    PubMed  CAS  Google Scholar 

  149. Schweizer H.P., 2001, Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Curro Opinion Biotechnol., 12:439–445.

    CAS  Google Scholar 

  150. Schweizer H.P. and Becher A., 2000, Integration-proficient Pseudomonas aeruginosa vectors for isolation of single copy chromosomallacZ and lux gene fusions. BioTechniques, 29:948–954.

    PubMed  Google Scholar 

  151. Schweizer H.P. and Chuanchuen R., 2001, A small broad-host-range lacZ operon fusion vector with low background activity. BioTechniques, 31:1258–1262.

    PubMed  CAS  Google Scholar 

  152. Schweizer H.P. and Hoang T., 1995, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 158:15–22.

    PubMed  CAS  Google Scholar 

  153. Schweizer H.P., Hoang T.T., Propst K.L., Ornelas H.R., and Karkhoff-Schweizer R.R., 2001, Vector design and development of host systems for Pseudomonas. In J.K. Setlow (ed.), Genetic Engineering, Vol. 23, pp. 69–81. Kluwer-Academic/Plenum New York, NY.

    Google Scholar 

  154. Schweizer H.P. and Karkhoff-Schweizer R.R., 1996, Design of bacterial hosts for lac-based expression vectors. In R. Tuan (ed.), Methods in Molecular Biology: Recombinant Gene Expression Protocols, Vol. 62, pp. 17–27. Humana Press Totowa, NJ.

    Google Scholar 

  155. Schweizer H.P., Klassen T.R., and Hoang T., 1996, Improved methods for gene analysis and expression in Pseudomonas. In T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (eds), Molecular Biology of Pseudomonads, pp. 229–237. American Society for Microbiology Press Washington, DC.

    Google Scholar 

  156. Shen H., Gold S.E., Tamaki S.J., and Keen N.T., 1992, Construction of Tn7-lux system for gene expression studies in Gram-negative bacteria. Gene, 122:27–34.

    PubMed  CAS  Google Scholar 

  157. Simon R., O’Connell M., Labes M., and Pooler A., 1986, Plasmid vectors for the genetic analysis and manipulation ofrhizobia and other Gram-negative bacteria. Methods Enzymol., 118:640–659.

    PubMed  CAS  Google Scholar 

  158. Simon R., Priefer D., and Piihler A., 1983, A broad-host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology, 1:784–791.

    CAS  Google Scholar 

  159. Skorupski K. and Taylor R.K., 1996, Positive selection vectors for allelic exchange. Gene, 169:47–52.

    PubMed  CAS  Google Scholar 

  160. Skrzypek E., Haddix P.L., Plano G.V, and Straley S.C., 1993, New suicide vector for gene replacement in Yersinia and other gram-negative bacteria. Plasmid, 29:160–163.

    PubMed  CAS  Google Scholar 

  161. Smits T.H., Seeger M.A., Witholt B., and van Beilen J.B., 2001, New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid, 46:16–24.

    PubMed  CAS  Google Scholar 

  162. Stanislavsky E.S. and Lam I.S., 1997, Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol. Rev., 21:243–277.

    CAS  Google Scholar 

  163. Stibitz S., 1994, Use of conditionally counterselectable suicide vectors for allelic exchange. Methods Enzymol., 235:458–465.

    PubMed  CAS  Google Scholar 

  164. Stintzi A., Johnson Z., Stonehouse M., Ochsner D., Meyer JM., Vasil M.L., and Poole K., 1999, The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol., 181:4118–4124.

    PubMed  CAS  Google Scholar 

  165. Stover C.K., Pham X.-Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman E.S.L., Hufnagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Spencer D., Wong G.K.-S., Wu Z., Paulsen L.T., Reizer J., Saier M.H., Hancock R.E.W, Lory S., and Olson M.V, 2000, Complete genome sequence of Pseudomonas aeruginosa, an opportunistic pathogen. Nature, 406:959–964.

    PubMed  CAS  Google Scholar 

  166. Suarez A., GuttIer A., Stratz M., Staendner L.H., Timmis K.N., and Guzman C.A., 1997, Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopyapplications. Gene, 196:69–74.

    PubMed  CAS  Google Scholar 

  167. Sukchawalit R., Vattanaviboon P, Sallabhan R., and Mongkolsuk S., 1999, Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol. Lett., 181:217–223.

    PubMed  CAS  Google Scholar 

  168. Taylor R.K., Manoil C., and Mekalanos J.J., 1989, Broad-host-range vectors for delivery of TnphoA: Dse in genetic analysis of secreted virulence determinants of Vibrio cholerae. J. Bacteriol., 171:1870–1878.

    PubMed  CAS  Google Scholar 

  169. Toder D.S., 1994, Gene replacement in Pseudomonas aeruginosa. Methods Enzymol., 235:466–474.

    PubMed  CAS  Google Scholar 

  170. Valls M., Atrian S., de Lorenzo V, and Fernandez L.A., 2000, Engineering a mouse metallothioneine on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nature Biotechnol., 18:661–665.

    CAS  Google Scholar 

  171. van der Bij A., de Weger L., Tucker W, and Lugtenberg B., 1996, Plasmid Stability in Pseudomonas jiuorescens in the Rhizosphere. Appl. Environ. Microbiol., 62:1076–1080.

    PubMed  Google Scholar 

  172. Vieira J. and Messing J., 1982, The pDC plasmids, an Ml3mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 19:259–268.

    PubMed  CAS  Google Scholar 

  173. Wang J., Lory S., Ramphal R., and Jin S., 1996, Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol., 22:1005–1012.

    PubMed  CAS  Google Scholar 

  174. Wang J., Mushegian A., Lory S., and Jin S., 1996, Large-scale isolation of candidate virulence genes of Pseudmonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA, 93:10434–10439.

    PubMed  CAS  Google Scholar 

  175. Warren J.W, Walker IR., Roth J.R., and Altman E., 2000, Construction and characterization of a highly regulable expression vector, pLAC11, and its multipurpose derivatives, pLAC22 and pLAC33. Plasmid, 44:138–151.

    PubMed  CAS  Google Scholar 

  176. Watson A.A., AIm R.A., and Mattick IS., 1996, Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene, 172:163–164.

    PubMed  CAS  Google Scholar 

  177. Weitz H.J., Ritchie J.M., Bailey D.A., Horsburgh A.M., Killham K., and Glover L.A., 2001, Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial sensors for ecotoxicity testing. FEMS Microbiol. Lett., 197:159–165.

    PubMed  CAS  Google Scholar 

  178. West S.E.H., Schweizer H.P., Dall C., Sample A.K., and Runyen-Janecky L.J., 1994, Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and the sequence of the region required for their replication in Pseudomonas aeruginosa. Gene, 128:81–86.

    Google Scholar 

  179. Whiteley M., Lee K.M., and Greenberg E.P., 1999, Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96:13904–13909.

    PubMed  CAS  Google Scholar 

  180. Williams P.A., Jones R.M., and Shaw L.E., 2002, A third transposable element, ISPpuI2, from the toluene-xylene catabolic plasmid pWWO of Pseudomonas putida mt-2. J Bacteriol., 184:6572–6580.

    PubMed  CAS  Google Scholar 

  181. Winstanley C., Morgan J.A.W., Pickup R.W., Jones J.G., and Saunders J.R., 1989, Differential regulation of lambda P L and P R promoters by a cI repressor in a broad-host-range thermoregulated plasmid marker system. Appl. Environ. Microbiol., 55:771–777.

    PubMed  CAS  Google Scholar 

  182. Winther-Larsen H.C., Blatny J.M., Valand B., Brautaset T., and Valla S., 2000, Pmpromoter expression mutants and their use in broad-host-range RK2 plasmid vectors. Metab. Eng., 2:92–103.

    PubMed  CAS  Google Scholar 

  183. Winzer K., Falconer C., Garber N.C., Diggle S.P., Camara M., and Williams P., 2000, The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol., 182:6401–6411.

    PubMed  CAS  Google Scholar 

  184. Wong R.S., Wirtz R.A., and Hancock R.E., 1995, Pseudomonas aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes: the effects of positioning and length on the antigenicity of the epitope. Gene, 158:55–60.

    PubMed  CAS  Google Scholar 

  185. Wong S.M. and Mekalanos J.J., 2000, Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97:10191–10196.

    PubMed  CAS  Google Scholar 

  186. Woolwine S.C., Sprinkle A.B., and Wozniak D.l, 2001, Loss of Pseudomonas aeruginosa PhpA aminopeptidase activity results in increased algD transcription. J. Bacteriol., 183:4674–4679.

    PubMed  CAS  Google Scholar 

  187. Wyckoff T.J. and Wozniak D.J., 2001, Transcriptional analysis of genes involved in Pseudomonas aeruginosa biofilms. Methods Enzymol., 336:144–151.

    PubMed  CAS  Google Scholar 

  188. Zaat S.A., Slegtenhorst-Eegdeman K., Tommassen J., Geli V., Wijffelman C.A., and Lugtenberg B.J, 1994, Construction of phoE-caa, a novel PCR-and immunologically detectable marker gene for Pseudomonas putida. Appl. Environ. Microbiol., 60:3965–3973.

    PubMed  CAS  Google Scholar 

  189. Zhang L., Li X.-Z., and Poole K., 2001, SmeDEF multidrug efflux pump contributes to intrinsic multi drug resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother., 45:3497–3503.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schweizer, H.P., de Lorenzo, V. (2004). Molecular Tools for Genetic Analysis of Pseudomonads. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics