Skip to main content

Taxonomy of Pseudomonads: Experimental Approaches

  • Chapter
Pseudomonas

Abstract

Straight or slightly curved rods but not helical, 0.5–1.0 µn in diameter by 1.5–5.0 µn in length. Most of the species do not accumulate granules of poly-β-shydroxybutyrate, but accumulation of poly-hydroxyalkanoates of monomer lengths higher than C4 may occur when growing on alkanes or gluconate. Do not produce prosthecae and are not surrounded by sheaths. No resting stages are known. Gram-negative. Motile by one or several polar flagella; rarely nonmotile. In some species lateral flagella of short wavelength may also be formed. Aerobic, having a strictly respiratory type of metabolism with oxygen as the terminal electron acceptor; in some cases nitrate can be used as an alternate electron acceptor, allowing growth to occur anaerobically. Xanthomonadins are not produced. Most, if not all, species fail to grow under acid conditions (pH 4.5 or lower). Most species do not require organic growth factors. Oxidase-positive or negative. Catalase-positive. Chemoorganotrophic. Strains of the species include in their composition the hydroxylated fatty acids 3-0H 10:0 and 12:0, and 2-0H 12:0, and ubiquinone Q-9. Widely distributed in nature. Some species are pathogenic for humans, animals or plants. The mol% G+C content of the DNA is 58–69.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achouak W., Sutra L., Heulin T., Meyer J.M., Fromin N., DeGraeve S., Christen R., and Gardan L., 2000, Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J Syst. Evol. Microbiol., 50:9–18.

    Article  PubMed  CAS  Google Scholar 

  2. Ambler R., 1974, The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype c. Biochem. J., 137:3–14.

    PubMed  CAS  Google Scholar 

  3. Amann R.I., Ludwig W., and Schleifer K.-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59:143–169.

    PubMed  CAS  Google Scholar 

  4. Amman R., Ludwig w., Schulze R., Spring S., Moore E., and Schleifer K.-H., 1996, rRNA-targeted oligonucleotide probes for the identification of genuine and former pseudomonads. Syst. Appl. Microbiol., 19:501–509.

    Article  Google Scholar 

  5. Amorese D.A., 1990, Automated DNA sequencing. In I. Katube (ed.), Automation in Biotechnology: Proceedings of the 4th Toyota Conference, p. 29–55. Elsevier Science Publishers, B.V: Amsterdam.

    Google Scholar 

  6. Andersen S.M., Johnsen K., Rensen J.S., Nielsen P., and Jacobsen C.S., 2000, Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol., 50:1957–1964.

    Article  PubMed  CAS  Google Scholar 

  7. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., and Oyaizu H., 2000, Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol., 50:1563–1589.

    Article  PubMed  CAS  Google Scholar 

  8. Anzai Y., Kodo Y., and Oyaizu H., 1997, The phylogeny of the genera Chryseomonas, Flavimonas and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Bacteriol., 47:249–251.

    Article  PubMed  CAS  Google Scholar 

  9. Ark P.A., and Tompkins C.M., 1946, Bacterial leaf blight of bird’s nest fern. Phytopathol., 36:758–761.

    Google Scholar 

  10. Attafuah A. and Bradbury J.E., 1989, Pseudomonas antimicrobica, a new species strongly antagonistic to plant pathogens. J Appl. Bacteriol., 67:567–573.

    Article  Google Scholar 

  11. Baida N., Yazourh A., Singer E., and Izard D., 2001, Pseudomonas brenneri sp. nov., a new species isolated from natural mineral waters. Res. Microbiol., 152:493–502.

    Article  PubMed  CAS  Google Scholar 

  12. Baida N., Yazourh A., Singer E., and Izard D., 2002, Pseudomonas grimontii sp. nov. Int. J Syst. Evol. Microbiol., 52:1497–1503.

    Article  PubMed  CAS  Google Scholar 

  13. Baldani J.J., Pot B., Kirchhof G., Falsen E., Baldani V.L.D., Olivares E.L., Hoste B., Kersters K., Hartmann A., Gillis M., and Dobereiner I., 1996, Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF Group 1) as Herbaspirillum species 3. Int. J Syst. Bacteriol., 46:802–810.

    Article  PubMed  CAS  Google Scholar 

  14. Ballard R.W., Palleroni N.J., Doudoroff M., Stanier R.Y., and Mandel M., 1970, Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P marginata, P alliicola, and P caryophylli. J. Gen. Microbiol., 60:199–214.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett E.L., Solanes R.E., Tang J.S., and Palleroni N.J., 1986, P fluorescens biovar V: Its resolution into distinct component groups and the relationship of these groups to other P fluorescens biovars, to P putida., and to psychrotrophic pseudomonads associated with food spoilage. J Gen. Microbiol., 132:2709–2721.

    PubMed  CAS  Google Scholar 

  16. Baumann L. and Baumann P., 1978, Studies of relationship among terrestrial Pseudomonas, Alcaligenes., and enterobacteria by an immunological comparison of glutamine synthetase. Arch. Microbiol., 119:25–30.

    Article  PubMed  CAS  Google Scholar 

  17. Baumann L., Baumann P., Mandel M., and Allen R.D., 1972, Taxonomy of aerobic marine eubacteria. J Bacteriol., 110:402–429.

    PubMed  CAS  Google Scholar 

  18. Baumann P., Bowditch R.D., Baumann L., and Beaman B., 1983, Taxonomy of marine Pseudomonas species: P stanieri sp. nov., P perfectomarina sp. nov. nom. rev.; P nautica; and P doudoroffii. Int. J Syst. Bacteriol., 33:857–865.

    Article  Google Scholar 

  19. Behrendt U., Ulrich A., Schumann P., Erler W., Burghardt J., and Seyfarth W., 1999, A taxonomic study of bacteria isolated from grasses: A proposed new species Pseudomonas graminis sp. nov. Int. J Syst. Bacteriol., 49:297–308.

    Article  PubMed  CAS  Google Scholar 

  20. Bennasar A., Rossello-Mora R., Lalucat J., and Moore E.R.B., 1996, 16 rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst. Bacteriol., 46:200–205.

    Article  PubMed  CAS  Google Scholar 

  21. Billing E., 1970, Pseudomonas viridiflava (Burkholder, 1930; Clara 1934). J Appl. Bacteriol., 33:492–500.

    Article  PubMed  CAS  Google Scholar 

  22. Bowman J.P., Sly L.I., Hayward A.C., Spiegel Y., and Stackebrandt E., 1993, Telluria mixta (Pseudomonas mixta Bowman, Sly and Hayward 1988) gen. nov., and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int. J. Syst. Bacteriol., 43:120–124.

    Article  PubMed  CAS  Google Scholar 

  23. Brenner DJ., Staley J.T., and Krieg N.R., 2001, Classification of procaryotic organisms and the concept of bacterial speciation. In D.R. Boone, R.W. Castenholz., and G.M. Garrity (eds), Bergey sManual of Systematic Bacteriology, 2nd edn, Vol. I, pp. 27–31. Springer-Verlag, New York.

    Chapter  Google Scholar 

  24. Brown G.R., Sutcliffe I.C., and Cummings S.P., 2001, Reclassification of [Pseudomonas] doudoroffii (Baumann et al 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int. J. Syst. Evol. Microbiol., 51:67–72.

    PubMed  CAS  Google Scholar 

  25. Buchanan T.M. and Pearce W.A., 1979, Pathogenic aspects of outer membrane components of Gram negative bacteria. In M. Inouye (ed.), Bacterial Outer Membranes. Biogenesis and Function, pp. 475–514. John Wiley & Sons New York.

    Google Scholar 

  26. Burkholder W.H., 1942, Three bacterial plant pathogens, Phytomonas caryophylii, sp. n., Phytomonas allicola sp. n., and Phytomonas manihoti (Arthaud-Berthet et Bonder) Viegas. PhytopathoI., 32:141–149.

    Google Scholar 

  27. Burkholder WH., 1948, Genus I Pseudomonas Migula. Bacterial Plant Pathogens. In: R.S. Breed, E.G.D. Murray and A.P. Hitchens (eds): Bergey’s Manual of Determinative Bacteriology, 6th ed., The Williams & Wilkins Co Baltimore, 1948, pp. 82–150.

    Google Scholar 

  28. Busse H.-J., Denner E.B.M., and Lutitz W., 1996, Classification and identification ofbacteria: Current approaches to an old problem. Overview of methods used in bacterial systematics. J. Bacteriol., 47:3–38.

    CAS  Google Scholar 

  29. Byng G.S., Johnson J.L., Whitaker RJ., Gherna R.L., and Jensen R.A., 1983, The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol., 19:272–282.

    Article  PubMed  CAS  Google Scholar 

  30. Byng G.S., Kane J.F., and Jensen R.A., 1982, Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit. Rev. Microbiol., 9:227–252.

    Article  PubMed  CAS  Google Scholar 

  31. Byng G.S., Whitaker RJ., Gherna R.L., and Jensen R.A., 1980, Variable enzymological patterning in tyrosine biosynthesis as a new means of determining natural relatedness among Pseudomonadaceae. J. Bacteriol., 144:247–257.

    PubMed  CAS  Google Scholar 

  32. Catara V., Sutra L., Morineau A., Achouak W., Christen R., and Gardan L., 2002, Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int. J. Syst. Evol. Microbiol., 52:1749–1758.

    Article  PubMed  CAS  Google Scholar 

  33. Christensen H., Boye M., Poulsen L.K., and Rasmussen O.F., 1994, Analysis of fluorescent pseudomonads based on 23S ribosomal DNA sequences. Appl. Environ. Microbiol., 60:2196–2199.

    PubMed  CAS  Google Scholar 

  34. Clarke P.H., 1972, Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species. J. Gen. Microbiol., 71:241–257.

    Article  PubMed  CAS  Google Scholar 

  35. Cole J.R., Chai B., Marsh T.L., Farris RJ., Wang Q., Kulam S.A., Chandra S., McGarrell D.M., Schmidt T.M., Garrity G.M., and Tiedje J.M., 2003, The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucl. Acids Res., 31:442–443.

    Article  PubMed  CAS  Google Scholar 

  36. Collins M.D. and Jones D., 1981, Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev., 45:316–354.

    PubMed  CAS  Google Scholar 

  37. Coroler L., Elomari M., Hoste B., Gillis M., Izard D., and Leclerc H., 1996, Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst. Appl. Microbiol., 19:600–607.

    Article  CAS  Google Scholar 

  38. Coenye T., Gillis M., and Vandamme P., 2000, Pseudomonas antimicrobica Attafuah and Bradbury 1990 is a junior synonym of Burkholderia gladioli (Severini 1913) Yabuuchi et al 1993. Int. J. Syst. Evol. Microbiol., 50:2135–2139.

    Article  PubMed  Google Scholar 

  39. Costas M., 1992, Classification, identification., and typing ofbacteria by the analysis oftheir one-dimensional polyacrylamide gel electrophoretic protein patters. In A. Chambrach, M.J. Dunn., and B.J. Radola (eds), Advances in Electrophoresis, Vol. 5. VCH Verlagsgesellshaft, Weinheim.

    Google Scholar 

  40. Dabboussi E, Hamze M., Elomari M., Verhille S., Baida N., Izard D., and Leclerc H., 1999, Taxonomic study of bacteria isolated from Lebanese spring waters: proposal of Pseudomonas cedrella sp. nov. and.P orientalis sp. nov. Res. Microbiol., 150: 303-316.

    Google Scholar 

  41. Dabboussi E, Hamze M., Elomari M., Verhille S., Baida N., Izard D., and Leclerc H., 1999, Pseudomonas libanensis, sp. nov., a new species isolated from Lebanese spring waters. Int. J. Syst. Bacteriol., 1999, 49:1091–1101.

    Article  PubMed  CAS  Google Scholar 

  42. Dabboussi E, Hamze M., Singer E., Geoffroy V, Meyer J.M., and Izard D., 2002, Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int. J. Syst. Evol. Microbiol., 52:363–376.

    PubMed  CAS  Google Scholar 

  43. Dasgupta N., Arora S.K., and Ramphal R., 2000, fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol., 182:357–364.

    Article  PubMed  CAS  Google Scholar 

  44. Delorme S., Lemanceau P, Christen R., Corberand T., Meyer J.M., and Gardan L., 2002, Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol., 52:513–523.

    PubMed  CAS  Google Scholar 

  45. Delorme S., Philippot L., Edel-Hermann V, Deulvot C., Mougel C., and Lemanceau P, 2003, Comparative genetic diversity of the narG nosZ., and 16S rRNA genes in fluorescent pseudomonads. Appl. Environ. Microbiol., 69:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  46. den Dooren de long L.E., 1926, Bijdrage tot de kennis van het mineralisatieprocess, pp. 1–199. Thesis. Technische Hogeshool Delft. Nijgh & Van Ditmar Rotterdam.

    Google Scholar 

  47. Denner E.B.M., Kampfer P, Busse H.-I., and Moore E.R.B., 1999, Reclassification of Pseudomonas echinoides Heumann 1962, t343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int. J. Syst. Bacteriol., 49:1103–1109.

    Article  PubMed  CAS  Google Scholar 

  48. De Vos P. and De Ley J., 1983, Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol., 33:487–509.

    Article  Google Scholar 

  49. De Vos P., Goor N., Gillis M., and De Ley J., 1985, Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol., 35:169–184.

    Article  Google Scholar 

  50. De Vos P, Landschoot A.V, Segers P, Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., and De Ley I., 1989, Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: Ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol., 39:35–49.

    Article  Google Scholar 

  51. Dobritsa S.V., 1985, Restriction analysis of the Frankia ssp. genome. FEMS Microbiol. Lett., 29:123–128.

    Article  CAS  Google Scholar 

  52. Dobler K., Huss VAR., and Zumft WG., 1987, Beaman 1983 to Pseudomonas stutzeri (Lehmann and Neumann 1896) Sidjerius 1946. Int. J Syst. Bacteriol., 37:1–3.

    Article  Google Scholar 

  53. Doi R.H. and Igarashi R.T., 1965, Conservation of ribosomal and messenger ribonucleic acid cistrons in Bacillus species. J Bacteriol., 90:384–390.

    PubMed  CAS  Google Scholar 

  54. Doudoroff M., Contopoulou R., Kunisawa R., and Palleroni N.J., 1974, Taxonomic validity of Pseudomonas denitrificans (Christensen) Bergey et al Request for an opinion. Int. J Syst. Bacteriol., 24:294–300.

    Article  Google Scholar 

  55. Doudoroff M. and Palleroni N.J., 1974, Genus I. Pseudomonas Migula 1894. In R.E. Buchanan and N.E. Gibbons (eds), Bergey s Manual of Determinative Bacteriology, 8th edn, pp. 217–243. Williams & Wilkins Baltimore.

    Google Scholar 

  56. Dubnau D., Smith I., Morell P., and Marmur I., 1965, Genetic conservation in Bacillus species and nucleic acid homologies. Proc. Natl. Acad. Sci. USA, 54:491–498.

    Article  PubMed  CAS  Google Scholar 

  57. Edwards U., Rogall T., Bloecker H., Emde M., and Boettger E., 1989, Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl. Acids Res., 17:7843–7853.

    Article  PubMed  CAS  Google Scholar 

  58. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., and Leclerc H., 1996, DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J Syst. Bacteriol., 46:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  59. Elomari M., Coroler L., Verhille S., Izard D., and Leclerc H., 1997, Pseudomonasmonteilii sp. nov., isolated from clinical specimens. Int. J Syst. Bacteriol., 47:846–852.

    Article  PubMed  CAS  Google Scholar 

  60. Fendrich C., 1988, Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake Utah USA. Syst. Appl. Microbiol., 11:36–43.

    Article  CAS  Google Scholar 

  61. Fialho A.M., Zielinski N.A., Fett WE, Chakrabarty A.M., and Berry A., 1990, Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-AzomonasAzotobacter lineage of superfamily B procaryotes. Appl. Environ. Microbiol., 56:436–443.

    PubMed  CAS  Google Scholar 

  62. Fox G.E., Stackebrandt E., Hespell R.B., Gibson J., Maniloff J., Dyer T.A., Wolfe R.S., Balch WE., Tanner R.S., Magrum LJ., Zablen L.B., Blakemore R., Gupta R., Bonen L., Lewis BJ., Stahl D.A., Luehrsen K.R., Chen K.N., and Woese C.R., 1980, The phylogeny of prokaryotes. Science, 209:457–463.

    Article  PubMed  CAS  Google Scholar 

  63. Fox G.E., Wisotzkey J.D., and Jurtshuk P., 1992, How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J Syst. Bacteriol., 42:166–170.

    Article  PubMed  CAS  Google Scholar 

  64. Fuchs R., 2001, Siderotyping-A powerful tool for the characterization of the pyoverdines. Curr. Top. Med. Chem., 1:31–57.

    Article  PubMed  CAS  Google Scholar 

  65. Gardan L., Bella P., Meyer IM., Christen R., Rott P., Achouak W., and Samson R., 2002, Pseudomonas salomonii sp. nov., pathogenic on garlic., and Pseudomonas palleroniana sp. nov., isolated from rice. Int. J Syst. Evol. Microbiol., 52:2065–2074.

    Article  PubMed  CAS  Google Scholar 

  66. Gardan L., Bollet C., Abu Ghorrah M., Grimont E., and Grimont P.A.D., 1992, DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. Int. J Syst. Bacteriol., 42:606–612.

    Article  CAS  Google Scholar 

  67. Gardan L., Shafik H., Belouin S., Brosch R., Grimont E., and Grimont P.A.D., 1999, DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonascannabina sp. nov. (ex Sutic and Dowson 1959). Int. J Syst. Bacteriol., 49:469–478.

    Article  PubMed  CAS  Google Scholar 

  68. Gibson I, Stackebrandt E., Zablen L.B., Gupta R., and Woese C.R., 1979, A phylogenetic analysis of the purple photosynthetic bacteria. Curr. Microbiol., 3:59–64.

    Article  CAS  Google Scholar 

  69. Gillis M., Van T.V., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T., and Fernandez M.P., 1995, Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for Nj-fixing isolates from rice in Vietnam. Int. J Syst. Bacteriol., 45:274–289.

    Article  CAS  Google Scholar 

  70. Goldberg lB., Gorman WL., Flynn IL., and Ohman D.E., 1993, A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J Bacteriol., 175:1303–1308.

    PubMed  CAS  Google Scholar 

  71. Gonzales 1M., Mayer E, Moran M.A., Hodson R.E., and Whitman WB., 1997, Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int. J Syst. Bacteriol., 47:369–376.

    Article  Google Scholar 

  72. Goto M., 1983, Pseudomonasficuserectae sp. nov., the causal agent of bacterial leaf spot of Ficus erecta Thunb. Int. J Syst. Bacteriol., 33:546–550.

    Article  Google Scholar 

  73. Govan J.R.W, Fyfe J.A.M., and Jarman T.R., 1981, Isolation of alginate-producing mutants of Pseudomonas fluorescens Pseudomonas putida and Pseudomonas mendocina. J. Gen. Microbiol., 125:217–220.

    PubMed  CAS  Google Scholar 

  74. Gray P.H.H. and Thornton H.G., 1928, Soil bacteria that decompose certain aromatic compounds. Zentrabl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. II., 73:74–96.

    CAS  Google Scholar 

  75. Green P.N. and Bousfield J.J., 1983, Emendation of Methylobacterium Patt, Cole and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol., 33:875–877.

    Article  Google Scholar 

  76. Grimes D.I., Woese C.R., MacDonell M.T., and Colwell R.R., 1997, Systematic study of the genus Vogesella gen. nov., and its type species, Vogesella indigofera comb. nov. Int. J. Syst. Bacteriol., 47:19–27.

    Article  PubMed  CAS  Google Scholar 

  77. Grothues D. and Rudolph K., 1991, Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiol. Lett., 79:83–88.

    Article  CAS  Google Scholar 

  78. Grothues D. and Tiimmler B., 1991, New approaches in genome analysis by pulsed-field gel electrophoresis: Application to the analysis of Pseudomonas species. Molec. Microbiol., 5:2763–2776.

    Article  CAS  Google Scholar 

  79. Guasp K., Moore E.R.B., Lalucat J., and Bennasar A., 2000, Utility of internally transcribed 16S-23 S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int. J. Syst. Bacteriol., 50:1629–1639.

    CAS  Google Scholar 

  80. Gunsalus I.C., 1996, Pseudomonas: A century of biodiversity. In T. Nakazawa, K. Furukawa, D. Haas., and S. Silver (eds), Molecular Biology of Pseudomonads, pp. 8–21. ASM Press, Washington, D.C.

    Google Scholar 

  81. Hancock R.E.W. and Chan L., 1988, Outer membranes of environmental isolates of Pseudomonas aeruginosa. J. Clin. Microbiol., 26:2423–2424.

    PubMed  CAS  Google Scholar 

  82. Hildebrand D.C., Palleroni N.I., Hendson M., Toth J., and Johnson J.L., 1994, Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int. J. Syst. Bacteriol., 44:410–415.

    Article  PubMed  CAS  Google Scholar 

  83. Hills G.M., 1940, Ammonia production by pathogenic bacteria. Biochem. J., 34:1057–1069.

    PubMed  CAS  Google Scholar 

  84. Hof T., 1935, An investigation of the microorganisms commonly present in salted beans. Rec. Trav. Bot. Neerl., 32:151–173.

    Google Scholar 

  85. Holloway B.W., 1996, Pseudomonas genetics and taxonomy. In T. Nakazawa, K. Furukawa, D. Haas., and S. Silver (eds), Molecular Biology of Pseudomonads, pp. 22–32. ASM Press, Washington, D.C.

    Google Scholar 

  86. Holmes B., Owen R.I., Evans A., Malnick H., and Willcox W.R., 1977, Pseudomonas paucimobilis, a new species isolated from human clinical specimens the hospital environment, and other sources. Int. J. Syst. Bacteriol., 27:133–146.

    Article  Google Scholar 

  87. Hugh R., 1981, Pseudomonas maltophilia sp. nov. nom. rev. Int. J. Syst. Bacteriol., 31:195.

    Article  Google Scholar 

  88. Hunkapiller T., Kaiser R.I., Koop B.P., and Hood L., 1991, Large-scale and automated DNA sequence determination. Science 254:59–67.

    Google Scholar 

  89. Iizuka H. and Komagata K., 1963, An attempt at grouping of the genus Pseudomonas. J. Gen. Appl. Microbiol., 9:73–82.

    Article  Google Scholar 

  90. Iizuka H. and Komagata K., 1964, Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria. J. Gen. Appl. Microbiol., 10:207–221.

    Article  Google Scholar 

  91. Ikawa M., 1967, Bacterial phosphatides and natural relationships. Bacteriol. Rev., 31:54–64.

    PubMed  CAS  Google Scholar 

  92. Ikemoto S., Kuraishi H., Komagata K., Azuma R., Suto T., and Muroka. H., 1978, Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol., 24:199–213.

    Article  CAS  Google Scholar 

  93. Ivanova E.P., Gorshkova N.M., Sawabe T., Hayashi K., Kalinovskaya N.I., Lysenko A.M., Zhukova N.V., Nicolau D.V., Kuznetsova T.A., Mikhailov V.V., and Christen R., 2002, Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int. J. Syst. Evol. Microbiol., 52:2113–2120.

    Article  PubMed  CAS  Google Scholar 

  94. Jann A., Matsumoto H., and Haas D., 1988, The fourth arginine catabolic pathway of Pseudomonas aeruginosa. J. Gen. Microbiol., 134:1043–1053.

    PubMed  CAS  Google Scholar 

  95. Janse J.D., Rossi P., Angelucci L., Scortichini M., Derks J.H.J., Akkermans A.D.L., De Vrijer R., and Psallidas P.G., 1996, Reclassification of Pseudomonas syringae pv. avellanae as Pseudomonas avellanae (spec. nov.), the bacterium causing canker of hazelnut (Corylus avellana L.). Syst. Appl. Microbiol., 19:589–595.

    Article  CAS  Google Scholar 

  96. Jendrossek D., 2001, Transfer of [Pseudomonas] lemoignei, a Gram-negative rod with restricted catabolic capacity, to Paucimonas gen. nov. with one species, Paucimonas lemoignei comb. nov. Int. J. Syst. Evol. Microbiol., 51:905–908.

    Article  PubMed  CAS  Google Scholar 

  97. Johnson J.L., 1984, Nucleic acids in bacterial classification. In N.R. Krieg and J.G. Holt (eds), Bergeys Manual of Systematic Bacteriology, 1st edn, Vol. I, pp. 8–11. Academic Press New York.

    Google Scholar 

  98. Johnson J.L. and Palleroni N.J., 1989, Deoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol., 39:230–235.

    Article  Google Scholar 

  99. Kadota H., 1951, Studies on the biochemical activities of marine bacteria. I. On the agar decomposing bacteria in the sea. Memoirs of the College of Science, Kyoto University, 59:54–67.

    Google Scholar 

  100. Kersters K., Ludwig W., Vancanneyt M., DeVos P., Gillis M., and Schleifer K.-H., 1996, Recent changes in the classification of the pseudomonads: An overview. Syst. Appl. Microbiol., 19:465–477.

    Article  Google Scholar 

  101. Kersters K., Pot B., Dewettinck D., Torck D., Vancanneyt M., Vauterin L., and Vandamme P., 1994, Identification and typing of bacteria by protein electrophoresis. In F.G. Priest, A. Ramos-carmenzana, and B.J. Tindall (eds), Bacterial Diversity and Systematics, pp. 51–65. Plenum Press London.

    Chapter  Google Scholar 

  102. Kluyver A.J., 1956, Pseudomonas aureofaciens nov. spec. and its pigments. J. Bacteriol., 72:406–411.

    PubMed  CAS  Google Scholar 

  103. Kodama K., Kimura N., and Komagata K., 1985, Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int. J. Syst. Bacteriol., 35:467–474.

    Article  CAS  Google Scholar 

  104. Krieg N.R. and Garrity G.M., 2001, On using the manual. In D.R. Boone, R.W. Castenholz, and G.M. Garrity (eds), Bergey’s Manual of Systematic Bacteriology, 2nd edn, Vol. I, pp. 15–19. Springer-Verlag New York.

    Chapter  Google Scholar 

  105. Kwon S.W., Kim J.S., Park I.C., Yoon S.H., Park D.H., Lim C.K., and Go S.I., 2003, Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas Jinjuensissp. nov., novel species from farm soils in Korea. Int. J. Syst. Evol. Microbiol., 53:21–27.

    Article  PubMed  CAS  Google Scholar 

  106. Lalucat J., Parés R., and Schlegel H.G., 1982, Pseudomonas taeniospiralis sp. nov., and R-body-containing hydrogen bacterium. Int. J. Syst. Bacteriol., 32:332–338.

    Article  Google Scholar 

  107. Lane D., Pace B., Olsen G.J., Stahl D.A., Sogin M.L., and Pace N.R., 1985, Rapid determination of 16S ribosmal RNA sequences for phylogenetic analysis. Proc. Nat. Acad. Sci. USA, 82:6955–6959.

    Article  PubMed  CAS  Google Scholar 

  108. Lee K.Y., Wahl R., and Barbu E., 1956, Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries, Ann. Inst. Pasteur, 91:212–224.

    CAS  Google Scholar 

  109. Lee M. and Chandler A.C., 1941, A study of the nature, growth and control of bacteria in cutting compounds. J. Bacteriol., 41:373–386.

    PubMed  CAS  Google Scholar 

  110. Leifson E., 1962, Pseudomonas Spinosa n. sp. Int. Bull. Bacteriol. Nomencl. Taxon., 12:89–92.

    Google Scholar 

  111. Leifson E., 1962, The bacterial flora of distilled and stored water. II. New species of the genera Corynebacterium, Flavobacterium and Pseudomonas. Int. Bull. Bacteriol Nomencl. Taxon., 12:161–170.

    Google Scholar 

  112. Manaia C.M. and Moore E.R.B., 2002, Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto. Int. J. Syst. Evol. Microbiol., 52:2203–2209.

    Article  PubMed  CAS  Google Scholar 

  113. Mandel M., 1966, Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol., 43:273–292.

    Article  PubMed  CAS  Google Scholar 

  114. Manns T.F., 1909, The blade blight of oaks, a bacterial disease. Bull. Ohio Agr. Exp. Sta., 210:91–167.

    Google Scholar 

  115. Marmur J. and Doty P., 1962, Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol., 5:109–118.

    Article  PubMed  CAS  Google Scholar 

  116. Marmur J., Falkow S., and Mandelm M., 1963, New approaches to bacterial taxonomy. Ann. Rev. Microbiol., 17:329–372.

    Article  CAS  Google Scholar 

  117. McCarthy B.J. and Bolton E.I., 1963, An approach to the measurement of genetic relatedness among organisms. Proc. Natl. Acad. Sci. USA, 50:156–162.

    Article  PubMed  CAS  Google Scholar 

  118. McClelland M., Jones R., Patel Y., and Nelson M., 1987, Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucl. Acids Res., 15:5985–6005.

    Article  PubMed  CAS  Google Scholar 

  119. Medlin L., Elwood H.J., Stickel S., and Sogin M.L., 1988, The characterization of enzymatically amplified eukaryotic 16S-1ikerRNA coding regions. Gene, 71:491–499.

    Article  PubMed  CAS  Google Scholar 

  120. Meyer J.-M., Geoffroy Y.A., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., and Palleroni N.J., 2002, Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environm. Microbiol., 68:2745–2753.

    Article  CAS  Google Scholar 

  121. Meyer J.M. and Hornsperger J.-M., 1998, Iron metabolism and siderophores in Pseudomonas and related species. In I.C. Monte (ed.), Biotechnology Handbooks, Vol. 10: Pseudomonas, pp. 201–243. Plenum Publishing Co. New York.

    Google Scholar 

  122. Meyer O., Lalucat J., and Schlegel H.G., 1980, Pseudomonas carboxydohydrogena (Sanjieva and Zavarzin) comb. nov., a monotrichous, nonbudding, strictly aerobic, carbon monoxide-utilizing hydrogen bacterium previously assigned to Seliberia. Int. J. Syst. Bacteriol., 30:189–195.

    Article  CAS  Google Scholar 

  123. Mielenz J.R., Jackson L.E., O’Gara P., and Shanmugan K.I., 1979, Fingerprinting bacterial chromosomal DNA with restriction endonuclease EcoRI-comparison of Rhizobium spp., and identification of mutants. Can. J. Microbiol., 25:803–807.

    Article  PubMed  CAS  Google Scholar 

  124. Migula W., 1895, Ueber ein neues System der Bakterien. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe, 1:235–238.

    Google Scholar 

  125. Migula W., 1900, System der Bakterien. Handbuck der Morphologie, Entwickelunggeschichte und Systematik der Bakterien, Vol. II, pp. 875–954. Verlag von Gustav Fischer Jena.

    Google Scholar 

  126. Miyajima K., Tanii A., and Akita I., 1983, Pseudomonas fuscovaginae sp. nov., nom. rev. Int. J. Syst. Bacteriol., 33:656–657.

    Article  Google Scholar 

  127. Mohn W.W., Wilson A.E., Bicho P., and Moore E.R.B., 1999, Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst. Appl. Microbiol., 22:68–78.

    Article  PubMed  CAS  Google Scholar 

  128. Molin G., Ternström A., and Ursing J., 1986, Pseudomonas lundensis, a new bacterial species isolated from meat. Int. J. Syst. Bacteriol., 36:339–342.

    Article  Google Scholar 

  129. Monias B.L., 1928, Classification of Bacterium alcaligenes pyocyaneaum and fluorescens. J. Infect. Dis., 43:330–334.

    Article  Google Scholar 

  130. Moore E.R.B., Mau M., Arnscheidt A., Bottger E.C., Hutson R.A., Collins M.D., Van De Peer Y., De Wachter R., and Timmis K.N., 1996, The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst. Appl. Microbiol., 19:478–492.

    Article  CAS  Google Scholar 

  131. Moss C.W. and Dees S.B., 1976, Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens. J. Clin. Microbiol., 4:492–502.

    PubMed  CAS  Google Scholar 

  132. Mullis K.B. and Faloona F., 1987, Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Meth. Enzymol., 155:335–350.

    Article  PubMed  CAS  Google Scholar 

  133. Munsch P., Alatossava T., Marttinen N., Meyer J.M., Christen R., and Gardan L., 2002, Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int. J. Syst. Evol. Microbiol., 52:1973–1983.

    Article  PubMed  CAS  Google Scholar 

  134. Mutharia L.M. and Hancock R.E.W., 1985, Monoclonal antibody specific for an outer membrane lipoprotein of the Pseudomonas fluorescens branch of the family Pseudomonadaceae. Int. J. Syst. Bacteriol., 35:530–532.

    Article  Google Scholar 

  135. Neefs J.M., Van de Peer Y., De Rijk P., Goris A., and De Wachter R., 1991, Compilation of small ribosomal subunit RNA sequences. Nucl. Acids Res., 19:1987–2015.

    Article  PubMed  CAS  Google Scholar 

  136. Nakhimovskaya M.I., 1948, Pseudomonas aurantiaca n. sp. Mikrobiologiya, 17:58–65.

    CAS  Google Scholar 

  137. Nishimori E., Kita-Tsukamoto K., and Wakabayashi H., 2000, Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol., 50:83–89.

    Article  PubMed  CAS  Google Scholar 

  138. Ogimi C., 1977, Studies on bacterial gall of chinaberry (Melia Azedarach Lin.), caused by Pseudomonas meliae n. sp. Bull. Coll. Agric. Univ. Ryukyus, 24:497–556.

    Google Scholar 

  139. Olsen G.J., 1988, Phylogenetic analysis using ribosomal RNA. Meth. Enzymol., 164:793–812.

    Article  PubMed  CAS  Google Scholar 

  140. Oyaizu H. and Komagata K., 1983, Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol., 29:17–40.

    Article  CAS  Google Scholar 

  141. Palleroni N.J., 1975, General properties and taxonomy of the genus Pseudomonas. In P.H. Clarke and M.H. Richmond (eds), Genetics and Biochemistry of Pseudomonas, pp. 1–36. John Wiley & Sons London.

    Google Scholar 

  142. Palleroni N.J., 1984, Family I. Pseudomonadaceae. In N.R. Krieg, and J.G. Holt (eds), Bergey’s Manual ofSystematic Bacteriology, p. 141. The Williams & Wilkins Co. Baltimore.

    Google Scholar 

  143. Palleroni N.J., 1984, Genus I. Pseudomonas Migula 1894. In N.R. Krieg and J.G. Holt (eds), Bergey’s Manual of Systematic Bacteriology, p. 141–199. The Williams & Wilkins Co., Baltimore.

    Google Scholar 

  144. Palleroni N.J., 1992, Present situation of the taxonomy of aerobic pseudomonads. In E. Galli, S. Silver, and B. Witholt (eds), Pseudomonas: Molecular Biology and Biotechnology, pp. 105–115. ASM Press Washington, D.C.

    Google Scholar 

  145. Palleroni N.J., 1993, Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie Van Leeuwenhoek. Int. J. Microbiol., 64:231–251.

    Google Scholar 

  146. Palleroni N.J., 1992, Human and animal-pathogenic pseudomonads. In A. Belows, H.G. Trüper, M. Dworkin, W. Harder, and K.H. Schleifer (eds), The Prokaryotes, A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification and Applications, 2nd edn, Vol. III, pp. 3086–3103. Springer-Verlag New York.

    Google Scholar 

  147. Palleroni N.J., Ballard R.W., Ralston E., and Doudoroff M., 1972, Deoxyribo-nucleic acid homologies among some Pseudomonas species. J. Bacteriol., 110:1–11.

    PubMed  CAS  Google Scholar 

  148. Palleroni N.J. and Bradbury J.F., 1993, Stenotrophomonas, a new bacterial genus for Xanthomonas maltophila (Hugh 1980) Swings et al 1983. Int. J. Syst. Bacteriol., 43:606–609.

    Article  PubMed  CAS  Google Scholar 

  149. Palleroni N.J. and Doudoroff M., 1972, Some properties and subdivisions of the genus Pseudomonas. Annu. Rev. Phytopathol., 10:73–100.

    Article  Google Scholar 

  150. Palleroni N.J., Doudoroff M., Stanier R.Y., Solanes R.E., and Mandel M., 1970, Taxonomy of the aerobic pseudomonads: The properties of the Pseudomonas stutzeri group. J. Gen. Microbiol., 60:215–231.

    Article  PubMed  CAS  Google Scholar 

  151. Palleroni N.J. and Holmes B., 1981, Pseudomonas cepacia sp. nov. nom. rev. Int. J. Syst. Bacteriol., 31:479–481.

    Article  Google Scholar 

  152. Palleroni N.J., Kunisawa R., Contopoulou R., and Doudoroff M., 1973, Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol., 23:333–339.

    Article  CAS  Google Scholar 

  153. Pandey K.K., Mayilraj S., and Chakrabarti T., 2002, Pseudomonas indica sp. nov., a novel butane-utilizing species. Int. J. Syst. Evol. Microbiol., 52:1559–1567.

    Article  PubMed  CAS  Google Scholar 

  154. Pavarino G.L., 1911, Malattie causate de bacteri nelle orchidee. Atti della Reale accademie dei Lincei, 20:233–237.

    Google Scholar 

  155. Prober J.M., Trainor G.L., Dam R.J., Hobbs F.W., Robertson C.W., Zagursky R.J., Cocuzza A.J., Jensen M.A., and Baumeister K., 1987, A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science, 238:336–341.

    Article  PubMed  CAS  Google Scholar 

  156. Redfearn M.S., Palleroni N.J., and Stanier R.Y., 1966, A comparative study of Pseudomonas pseudomallei and Bacillus mallei. J. Gen. Microbiol., 43:293–313.

    Article  PubMed  CAS  Google Scholar 

  157. Psallidas P.G. and Panagopoulos C.G., 1975, A new bacteriosis of almond caused by Pseudomonas amygdali sp. nov. Ann. Inst. Phytopathol. Benaki., 11:94–108.

    Google Scholar 

  158. Ratledge C. and Wilkinson S.G., 1988, An overview of microbial lipids. In C. Ratledge and S.G. Wilkinson (eds), pp. 3–22. Academic Press London.

    Google Scholar 

  159. Robbs C.F., 1956, Uma nova doenca bacteriana do mamoeiro. Rev. Soc. Bras. Agron., 12:73–76.

    Google Scholar 

  160. Roberts S.J., Eden-Green S.J., Jones P., and Ambler D.J., 1990, Pseudomonas syzygii sp. nov., the cause of Sumatra disease of cloves. Syst. Appl. Microbiol., 13:34–43.

    Article  Google Scholar 

  161. Robert-Gero M., Poiret M., and Stanier R.Y., 1969, The function of the beta-keto-adipate pathway in Pseudomonas acidovorans. J. Gen. Microbiol., 57:207–214.

    Article  PubMed  CAS  Google Scholar 

  162. Rokosu A.A., 1983, Immunological relatedness of histidine ammonia-lyases from some species of Pseudomonas: Taxonomic implication. Int. J. Biochem., 15:867–870.

    Article  PubMed  CAS  Google Scholar 

  163. Rosselló-Mora R. and Amann R., 2001, The species concept for prokaryotes. FEMS Microbiol. Rev., 25:39–67.

    Article  PubMed  Google Scholar 

  164. Satomi M., Kimura B., Hamada T., Harayama S., and Fujii T., 2002, Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: Emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int. J. Syst. Evol. Microbiol., 52:739–747.

    Article  PubMed  CAS  Google Scholar 

  165. Savu1escu T., 1947, Contribution à la classification des Bactériacées phytopathogénes. Anal. Acad. Romane Ser III, 22:1–26.

    Google Scholar 

  166. Scarlett C.M., Fletcher J.T., Roberts P., and Lelliott R.A., 1978, Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Ann. Appl. Biol., 88:105–114.

    Article  Google Scholar 

  167. Schleifer K.-H., Amann R., Ludwig W., Rothemund C., Springer N., and Dorn S., 1992, Nucleic acid probes for the identification and in situ detection of pseudomonads. In E. Galli, S. Silver, and B. Witholt (eds), Pseudomonas: Molecular Biology and Biotechnology, pp. 127–134. ASM Press Washington, D.C.

    Google Scholar 

  168. Schöpp W., Toaspern C., and Tauchert H., 1985, Charakterisierung und Differenzierung fluoreszierender Pseudomonaden mit Hilfe von Substratverwertungsstudien. J. Basic Microbiol., 3:187–195.

    Article  Google Scholar 

  169. Schroeter J., 1872, Uber einige durch bacterien gebildete pigmente. In F. Cohn, Beitrage zur Biologie der Pflanzen, Vol. I, Part 2, pp. 109–126. J.U. Kern’s Verlag. Breslau.

    Google Scholar 

  170. Schroth M., Hildebrand D.C., and Panopoulos N., 1992, Phytopathogenic pseudomonads and plant-associated pseudomonads. In A. Belows, H G. Trüper, M. Dworkin, W. Harder, and K.H. Schleifer (eds), The Prokaryotes, A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification and Applications, 2nd edn, Vol. III, pp. 3104–3131. Springer-Verlag New York.

    Google Scholar 

  171. Schwartz R.M. and Dayhoff M.D., 1978, Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science, 199:395–403.

    Article  PubMed  CAS  Google Scholar 

  172. Segers. P., Vancanneyt M., Pot B., Torck D., Hoste B., Dewettinck D., Falsen E., Kersters K., and De Vos P., 1994, Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol., 44:499–510.

    Article  PubMed  CAS  Google Scholar 

  173. Seubert W., 1960, Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J. Bacteriol., 79:426–434.

    PubMed  CAS  Google Scholar 

  174. Sherris J.C., Shoesmith J.G., Parker M.T., and Breckon D., 1959, Tests for the rapid breakdown of arginine by bacteria: Their use in the identification of pseudomonads. J. Gen. Microbiol., 21:389–396.

    Article  PubMed  CAS  Google Scholar 

  175. Shinoda S. and Okamoto K., 1977, Formation and function of Vibrio parahemolyticus lateral flagella. J. Bacteriol., 129:1266–1271.

    PubMed  CAS  Google Scholar 

  176. Sikorski J., Stackebrandt E., and Wackernagel W., 2001, Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int. J. Syst. Evol. Microbiol., 51:1549–1555.

    PubMed  CAS  Google Scholar 

  177. Skerman V.B.D., McGowan V., and Sneath P.A.H., 1980, Approved lists of bacterial names. Int. J. Syst. Bacteriol., 30:225–420.

    Article  Google Scholar 

  178. Slade H.D., Doughty C.C., and Slamp W.C., 1954, The synthesis of high-energy phosphate in the citrulline ureidase reaction by soluble enzymes of Pseudomonas. Arch. Biochem. Biophys., 48:338–346.

    Article  PubMed  CAS  Google Scholar 

  179. Sneath P.H., Stevens A.M., and Sackin M.J., 1981, Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek J. Microbiol. Serol., 47:423–448.

    Article  CAS  Google Scholar 

  180. Sorensen B., Falk E.S., Wisloff-Nilsen E., Bjorvatn B., and Kristiansen B.E., 1985, Multivariate analysis of Neisseria DNA restriction endonuclease patterns. J. Gen. Microbiol., 131:3099–3104.

    PubMed  CAS  Google Scholar 

  181. Spröer C., Lang E., Hobeck P., Burghardt J., Stackebrandt E., and Tindall B.J., 1998, Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int. J. Syst. Bacteriol., 48:1445–1448.

    Article  Google Scholar 

  182. Stackebrandt E. and Goebel B.M., 1994, Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol., 44:846–849.

    Article  CAS  Google Scholar 

  183. Stackebrandt E. and Liesack W., 1993, Nucleic acids and classification. In M. Goodfellow and A.G. O’Donnell (eds), Handbook of New Bacterial Systematics, pp. 151–194. Academic Press London.

    Google Scholar 

  184. Stackebrandt E., Murray R.G.E., and Trüper H.G., 1988, Proteobacteria class is nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int. J. Syst. Bacteriol., 38:321–325.

    Article  Google Scholar 

  185. Stalon V. and Mercenier A., 1984, L-arginine utilization by Pseudomonas species. J. Gen. Microbiol., 130:69–76.

    PubMed  CAS  Google Scholar 

  186. Stalon V., Vander Wauven C., Momin P., and Legrain C., 1987, Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. J. Gen. Microbiol., 133:2487–2495.

    PubMed  CAS  Google Scholar 

  187. Stanier R.Y., Palleroni N.J., and Doudoroff M., 1966, The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol., 43:159–271.

    Article  PubMed  CAS  Google Scholar 

  188. Stanier R.Y., Wachter D., Gasser D., and Wilson A.C., 1970, Comparative immunological studies of two Pseudomonas enzymes. J. Bacteriol., 102:351–362.

    PubMed  CAS  Google Scholar 

  189. Stapp C., 1928, Schizomycetes (Spaltpilze oder Bakterien). In Sorauer (ed.), Handbuch der Pflanzenkrankheiten, 5th edn, Vol. 2, pp. 1–295. Paul Parey Berlin.

    Google Scholar 

  190. Starr M.P. and Burkholder W.H., 1942, Lipolytic activity of phytopathogenic bacteria determined by means of spirit blue agar and its taxonomic significance. Phytopathol., 32:598–604.

    CAS  Google Scholar 

  191. Stead D.E., 1992, Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol., 42:281–295.

    Article  CAS  Google Scholar 

  192. Stevens F.L., 1925, p. 469. In Plant Disease Fungi. MacMillan Co. New York.

    Book  Google Scholar 

  193. Sutra L., Siverio E., Lopez M.M., Hunault G., Bollet C., and Gardan L., 1997, Taxonomy of Pseudomonas strains isolated from tomato pith necrosis: Emended description of Pseudomonas corrugata and proposal of three unnamed fluorescent Pseudomonas genomospecies. Int. J. Syst. Bacteriol., 47:1020–1039.

    Article  PubMed  CAS  Google Scholar 

  194. Tamaoka J., Ha D.-M., and Komagata K., 1987, Reclassification of Pseudomonas Acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol., 37:52–59.

    Article  Google Scholar 

  195. Tesar M., Hoch C., Moore E.R.B., and Timmis K.N., 1996, Westprinting: Development of a rapid immunochemical identification for species within the genus Pseudomonas sensu stricto. Syst. Appl. Microbiol., 19:577–588.

    Article  CAS  Google Scholar 

  196. Thornley M.J., 1960, The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. Appl. Bacteriol., 23:37–52.

    Article  CAS  Google Scholar 

  197. Tindall B.J., 1994, Chemical analysis of Archaea and Bacteria: A critical evaluation of its use in taxonomy and identification. In G.F. Priest, A. Ramos-Cormenzana, and B.J. Tindall (eds), Bacterial Diversity and Systematics, p. 243–258. Plenum Press New York.

    Chapter  Google Scholar 

  198. Tricot C., Piérard A., and Stalon V., 1990, Comparative studies on the degradation of guanidino and ureido compounds by Pseudomonas. J. Gen. Microbiol., 136:2307–2317.

    Article  PubMed  CAS  Google Scholar 

  199. Uchino M., Kosako Y., Uchimura T., and Komagata K., 2000, Emendation of Pseudomonas Straminea Iizuka and Komagata 1963. Int. J. Syst. Evol. Microbiol., 50:1513–1519.

    Article  PubMed  Google Scholar 

  200. Uchino M., Shida O., Uchimura T., and Komagata K., 2001, Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. J. Gen. Appl. Microbiol., 46:247–261.

    Article  Google Scholar 

  201. Urakami T., Araki H., Oyanagi H., Suzuki K.L., and Komagata K., 1992, Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and Aminobacter niigataensis sp. nov. Int. J Syst. Bacteriol., 42:84–92.

    Article  Google Scholar 

  202. Urakami T., Ito-Yoshida C., Araki H., Kijima T., Suzuki K.-I., and Kornagata K., 1994, Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int. J. Syst. Bacteriol., 44:230–234.

    Article  Google Scholar 

  203. Vancanneyt M., Torck D., Dewettinck D., Vaerewijck M., and Kersters K., 1996, Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst. Appl. Microbiol., 19:556–568.

    Article  CAS  Google Scholar 

  204. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., and Fredrickson H.L., 1996, Fatty acid content in whole-cell hycrolysates and phospholipid fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol., 19:528–540.

    Article  CAS  Google Scholar 

  205. van Damme P.A., Johannes A.G., Cox H.C., and Berends W., 1960, On toxoflavin, the yellow poison of Pseudomonas cocovenenans. Rec. Trav. Chim. Pays-Bas, 79:255–267.

    Article  Google Scholar 

  206. Vandamme. P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R., Revets H., Lauwers S., Gillis M., Kersters K., and Govan J.R.W., 1997, Occurrence of multiple genomo-vars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol., 47:1188–1200.

    Article  PubMed  CAS  Google Scholar 

  207. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., and Swings J., 1996, Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev., 60:407–438.

    PubMed  CAS  Google Scholar 

  208. Van den Berghe A., Wassink A., Raeyemaekers P., De Baere R., Huysmans E., and De Wachter R., 1985, Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species. Eur. J. Biochem., 149:537–542.

    Article  Google Scholar 

  209. Van den Mooter M. and Swings J., 1990, Numerical analysis of 295 phenotypic features of 266 Xanthomonas strain and related strains and an improved taxonomy of the genus. Int. J. Syst. Bacteriol., 40:348–369.

    Article  PubMed  Google Scholar 

  210. van Niel C.B., 1946, The classification and natural relationships of bacteria. Cold Spring Harbor Symp. Quant. Biol., 11:285–301.

    Article  Google Scholar 

  211. Verhille S., Balda N., Dabboussi F., Hamze M., Izard D., and Leclerc H., 1999, Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int. J. Syst. Bacteriol., 49:1559–1572.

    Article  PubMed  CAS  Google Scholar 

  212. Viallard V., Poirier I., Cournoyer B., Haurat J., Wiebkin S., Ophel-Keller K., and Balandreau J., 1998, Burkholderia graminis sp. nov., a rhizospheric Burkholderia species and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei into Burkholderia. Int. J. Syst. Bacteriol., 48:549–563.

    Article  PubMed  CAS  Google Scholar 

  213. Wakabayashi H. and Egusa S., 1972, Characteristics of a Pseudomonas sp. from an epizootic of pond-culured eels (Anguillajaponica). Bull. Jpn. Soc. Sci. Fish., 38:577–587.

    Article  Google Scholar 

  214. Weisburg W.G., Barns S.M., Pelletier D.A., and Lane D.I., 1991, 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173:697–703.

    PubMed  CAS  Google Scholar 

  215. Wen A., Fegan M., Hayward C., Chakraborty S., and Sly L.I., 1999, Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int. J. System. Bacteriol., 49:567–576.

    Article  CAS  Google Scholar 

  216. West S.E.H. and Iglewski B.H., 1988, Codon usage in Pseudomonas aeruginosa. Nucl. Acids Res., 16:9323–9335.

    Article  PubMed  CAS  Google Scholar 

  217. Whitaker R.I., Byng G.S., Gherna R.L., and Jensen R.A., 1981, Diverse enzymological patterns of phenylalanine biosynthesis in pseudomonad bacteria are conserved in parallel with DNA/DNA homology groups. J. Bacteriol., 147:526–566.

    PubMed  CAS  Google Scholar 

  218. Widmer F., Seidler R.I., Gillevet P.M., Watrud L.S., and Di Giovanni G.D., 1998, A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl. Env. Microbiol., 64:2545–2553.

    CAS  Google Scholar 

  219. Wilkinson S.G., 1968, Studies on the cell walls of Pseudomonas species resistant to ethylene-diaminetetraacetic acid. J. Gen. Microbiol., 54:195–213.

    Article  PubMed  CAS  Google Scholar 

  220. Wilkinson S.G., Galbraith L., and Lightfoot G.A., 1973, Cell walls, lipids, and lipopolysaccharides of Pseudomonas species. Eur. J. Biochem., 33:158–174.

    Article  PubMed  CAS  Google Scholar 

  221. Willems A., Busse A.I., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., and de Ley J., 1989, Hydrogenophaga, a new genus of hydrogenoxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas jlava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudojlava (formerly Pseudomonas pseudojlava and “Pseudomonas carboxydojlava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol., 39:319–333.

    Article  CAS  Google Scholar 

  222. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., and de Ley J., 1992, Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol., 42:107–119.

    Article  PubMed  CAS  Google Scholar 

  223. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., and de Ley J., 1990, Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) Group 13, EF Group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov. and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol., 40:384–398.

    Article  PubMed  CAS  Google Scholar 

  224. Winslow C.-E.A., Broadhurst J., Buchanan R.E., Krumwiede, Jr. C., Rogers L.A., and Smith G.H., 1917, The families and genera of the bacteria. J. Bacteriol., 2:505–566.

    PubMed  CAS  Google Scholar 

  225. Woese C.R., 1987, Bacterial evolution. Microbiol. Rev., 51:221–271.

    PubMed  CAS  Google Scholar 

  226. Woese C.R., Blanz P., and Hahn C.M., 1984, What isn’t a pseudomonad: The importance of nomenclature in bacterial classification. Syst. Appl. Microbiol., 5:179–195.

    Article  CAS  Google Scholar 

  227. Woese C.R., Stackebrandt E., Weisburg W.G., Paster B.J., Madigan M.T., Fowler V.J., Hahn C.M., Blanz P., Gupta R., Nelson K.H., and Fox G.E., 1984, The phylogeny of purple bacteria: The alpha subdivision. Syst. Appl. Microbiol., 5:315–326.

    Article  PubMed  CAS  Google Scholar 

  228. Woese C.R., Weisburg W.G., Paster B.J., Hahn C.M., Tanner R.S., Krieg N.R., Koops H.-P., Harms H., and Stackebrandt E., 1984, The phylogeny of purple bacteria: The beta subdivision. Syst. Appl. Microbiol., 5:327–336.

    Article  CAS  Google Scholar 

  229. Woese C.R., Weisburg W.G., Hahn C.M., Paster B.J., Zablen L.B., Lewis B.J., Macke T.J., Ludwig W., and Stackebrandt E., 1985, The phylogeny of purple bacteria: The gamma subdivision. Syst. Appl. Microbiol., 6:25–33.

    Article  CAS  Google Scholar 

  230. Wolterink A.F.W.M., Jonker A.B., Kengen S.W.M., and Starns A.J.M., 2002, Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Syst. Evol. Microbiol., 52:2183–2190.

    Article  PubMed  CAS  Google Scholar 

  231. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., and Arakawa M., 1992, Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol., 36:1251–1275.

    PubMed  CAS  Google Scholar 

  232. Yabuuchi E., Kosako Y., Yano I., Hotta H., and Nishiuchi Y., 1995, Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen nov: Proposal of Ralstonia Pickettii (Ralston, Palleroni and Doudoroff 1973) comb nov, Ralstonia solanacearum (Smith 1896) comb nov and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol., 39:897–904.

    PubMed  CAS  Google Scholar 

  233. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., and Yamamoto H., 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Micobiol. Immunol., 34:99–119.

    CAS  Google Scholar 

  234. Yamamoto S. and Harayami S., 1998, Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int. J. Syst. Bacteriol., 48:813–819.

    Article  PubMed  CAS  Google Scholar 

  235. Yamamoto S., Kasai H., Arnold D.L., Jackson R.W., Vivian A., and Harayama S., 2000, Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiol., 146:2385–2394.

    CAS  Google Scholar 

  236. Young J.M., 1970, Dripply gill: A bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. J. Agric. Res., 13:977–990.

    Article  CAS  Google Scholar 

  237. Yumoto I., Kusano T., Shingyo T., Nodasaka Y., Matsuyama H., and Okuyama H., 2001, Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new Facultatively psychrophilic bacterium. Extremophiles., 5:343–349.

    Article  PubMed  CAS  Google Scholar 

  238. Yumoto I., Yamazaki K., Hisinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., and Kawasaki K., 2001, Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int. J. Syst. Evol. Microbiol., 51:349–355.

    PubMed  CAS  Google Scholar 

  239. Zumft W.G., 1997, Cell biology and molecularbasis of denitrification. Microbiol. Mol. Biol. Rev., 61:533–616.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palleroni, N.J., Moore, E.R.B. (2004). Taxonomy of Pseudomonads: Experimental Approaches. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics