Global Regulation in Pseudomonas Syringae

  • David K. Willis
  • Thomas G. Kinscherf


Two questions come rather quickly to mind when one is confronted with writing a chapter on global regulation in Pseudomonas syringae. The first of these is very basic, and goes to the eventual scope of the article: what is P. syringae? This is not a straightforward quest ion, as the species is something of a taxonomic mess. P. syringae has long been recognized as a member of the original “inner circle” of pseudomonads, eventually codified as the rRNA Group I47. This group was further refined by both general and molecular characteristics into two additional phylogenetic groupings recently described as the intrageneric clusters (IGC) I and II, with P. syringae being in IGC II63. Detailed analysis of the nucleotide sequences of the gyrB and rpoD genes indicated that the IGC II cluster could be reduced still further to three complexes, with one being the “P. syringae complex” containing the pathovars and nomenspecies traditionally associated with P. syringae 63, After this point, the taxonomic picture becomes less clear. Plant pathogenic pseudomonads are not readily differentiated by standard phenotypic characteristics and have often been classified largely by host range as pathovars or subspecies of P. syringae 53, This is an unusually heterologous grouping, with DNA hybridization studies, ribotyping, and general characteristics having defined at least six47, and possibly as many as nine17, discrete genomospecies within the complex.


Sigma Factor Global Regulation Plant Microbe Alternative Sigma Factor Alginate Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D.L. and Vivian, A., 2000, Evidence for the mobility of an avirulence gene, avrPpiA1, between the chromosome and plasm ids of races of Pseudomonas syringae pv. pisi. Mol. Plant. Pathol., 1: 195–199.PubMedCrossRefGoogle Scholar
  2. 2.
    Barta, T.M., Kinscherf, T.G., and Willis, D.K., 1992, Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J. Bacteriol., 174: 3021–3029.PubMedGoogle Scholar
  3. 3.
    Bates, D.B., Boye, E., Asai, T., and Kogoma, T., 1997, The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc. Natl. Acad. Sci. USA, 94: 12497–12502.PubMedCrossRefGoogle Scholar
  4. 4.
    Bender, C.L., Alarcon-Chaidez, E, and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev., 63: 266–292.PubMedGoogle Scholar
  5. 5.
    Boch, J., Joardar, V., Gao, L., Robertson, T.L., Lim, M., and Kunkel, B.N., 2002, Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol. Microbial., 44: 73–88.CrossRefGoogle Scholar
  6. 6.
    Bregeon, D., Colot, V., Radman, M., and Taddei, E, 2001, Translational misreading: A tRNA modification counteracts a + 2 ribosomal frameshift. Genes Dev., 15: 2295–2306.PubMedCrossRefGoogle Scholar
  7. 7.
    Bretz, J., Losada, L., Lisboa, K., and Hutcheson, S.W, 2002, Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol. Microbiol., 45: 397–409.PubMedCrossRefGoogle Scholar
  8. 8.
    Colby, G., Wu, M., and Tzagoloff, A., 1998, MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J. Biol. Chem., 273: 27945–27952.PubMedCrossRefGoogle Scholar
  9. 9.
    Collmer, A., Badel, J.L., Charkowski, A.O., Deng, W.L., Fouts, D.E., Ramos, A.R., Rehm, A.H., Anderson, D.M., Schneewind, O., van Dijk, K., and Alfano, J.R., 2000, Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA, 97: 8770–8777.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui, Y., Chatterjee, A., and Chatterjee, A.K., 2001, Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol. Plant Microbe Interact., 14: 516–526.PubMedCrossRefGoogle Scholar
  11. 11.
    Deretic, V., Mohr, C.D., and Martin, D.W, 1991, Mucoid Pseudomonas aeruginosa in cystic fibrosis: Signal transduction and histone-like elements in the regulation of bacterial virulence. Mol. Microbiol., 5: 1577–1583.PubMedCrossRefGoogle Scholar
  12. 12.
    Dumenyo, C.K., Mukherjee, A., Chun, W, and Chatterjee, A.K., 1998, Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur. J. Plant Pathol., 104: 569–582.CrossRefGoogle Scholar
  13. 13.
    Elasri, M., Delorme, S., Lemanceau, P., Stewart, G., Laue, B., Glickmann, E., Oger, P.M., and Dessaux, Y, 2001, Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol., 67: 1198–1209.PubMedCrossRefGoogle Scholar
  14. 14.
    Fakhr, M.K., Penaloza-Vazquez, A., Chakrabarty, A.M., and Bender, C.L., 1999, Regulation of alginate biosynthes is in Pseudomonas syringae pv. syringae. J. Bacteriol., 181: 3478–3485.PubMedGoogle Scholar
  15. 15.
    Fouts, D.E., Abramovitch, R.B., Alfano, J.R., Baldo, A.M., Buell, C.R., Cartinhour, S., Chatterjee, A.K., D’Ascenzo, M., Gwinn, M.L., Lazarowitz, S.G., Lin, N.C., Martin, G.B., Rehm, A.H., Schneider, D.J., van Dijk, K., Tang, X., and Collmer, A., 2002, Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA, 99: 2275–2280.PubMedCrossRefGoogle Scholar
  16. 16.
    Fuqua, C., Parsek, M.R., and Greenberg, E.P., 2001, Regulation of gene expression by cell-to-cell communication: Acy1-homoserine lactone quorum sensing. Annu. Rev. Genet., 35: 439–468.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, E, and Grimont, PAD., 1999, DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Sys. Bacteriol., 49: 469–478.CrossRefGoogle Scholar
  18. 18.
    Garrett, E.S., Perlegas, D., and Wozniak, D.J., 1999, Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J. Bacteriol., 181: 7401–7404.PubMedGoogle Scholar
  19. 19.
    Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A., and Dessaux, Y., 1998, Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant Microbe Interact., 11: 156–162.PubMedCrossRefGoogle Scholar
  20. 20.
    Grimm, C., Aufsatz, W., and Panopoulos, N.J., 1995, The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol., 15: 155–165.PubMedCrossRefGoogle Scholar
  21. 21.
    Heeb, S. and Haas, D., 2001, Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant Microbe Interact., 14: 1351–1363.PubMedCrossRefGoogle Scholar
  22. 22.
    Hendrickson, E.L., Guevera, P., and Ausubel, E.M., 2000, The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J. Bacteriol., 182: 3508–3516.PubMedCrossRefGoogle Scholar
  23. 23.
    Hendrickson, E.L., Guevera, P., Penaloza-Vazquez, A., Shao, J., Bender, C., and Ausubel, E.M., 2000, Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. J. Bacteriol., 182: 3498–3507.PubMedCrossRefGoogle Scholar
  24. 24.
    Hershberger, C.D., Ye, R.W., Parsek, M.R., Xie, Z.D., and Chakrabarty, A.M., 1995, The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc. Natl. Acad. Sci. USA, 92: 7941–7945.PubMedCrossRefGoogle Scholar
  25. 25.
    Hickman, M.J., Orser, C.S., Willis, D.K., Lindow, S.E., and Panopoulos, N.J., 1987, Molecular cloning and biological characterization of the recA gene from Pseudomonas syringae. J. Bacteriol., 169: 2906–2910.PubMedGoogle Scholar
  26. 26.
    Hirano, S.S., Charkowski, A.O., Collrner, A., Willis, D.K., and Upper, C.D., 1999, Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc. Natl. Acad. Sci. USA, 96: 9851–9856.PubMedCrossRefGoogle Scholar
  27. 27.
    Hrabak, E.M. and Willis, D.K., 1992, The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol., 174: 3011–3020.PubMedGoogle Scholar
  28. 28.
    Hrabak, E.M. and Willis, D.K., 1993, Involvement of the lemA gene in the production of syringomycin and protease by Pseudomonas syringae pv. siringae. Mol. Plant Microbe Interact., 6: 368–375.CrossRefGoogle Scholar
  29. 29.
    Hutcheson, S.W., Bretz, J., Sussan, T., Jin, S., and Pak, K., 2001, Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J. Bacteriol., 183: 5589–5598.PubMedCrossRefGoogle Scholar
  30. 30.
    Janion, C., 2001, Some aspects of the SOS response system—a critical survey. Acta Biochim. Pol., 48: 599–610.PubMedGoogle Scholar
  31. 31.
    Keith, L.M. and Bender, C.L., 1999, AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J. Bacteriol., 181: 7176–7184.PubMedGoogle Scholar
  32. 32.
    Keith, L.M. and Bender, C.L., 2001, Genetic divergence in the algT-muc operon controlling alginate biosynthesis and response to environmental stress in Pseudomonas syringae. DNA Seq., 12: 125–129.PubMedGoogle Scholar
  33. 33.
    Kim, J.J. and Sundin, G.W, 2000, Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. J. Bacteriol., 182: 6137–6144.PubMedCrossRefGoogle Scholar
  34. 34.
    Kinscherf, T.G. and Willis, D.K., 1999, Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-hornoserine lactone biosynthetic gene ahilI. J.Bacteriol., 181: 4133–4136.PubMedGoogle Scholar
  35. 35.
    Kinscherf, T G. and Willis, O.K., 2002, Global regulation by gidA in Pseudomonas syringae. J. Bacteriol., 184: 2281–2286.PubMedCrossRefGoogle Scholar
  36. 36.
    Kitten, T., Kinscherf, T.G., McEvoy, J.L., and Willis, D.K., 1998, A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol., 28: 917–929.PubMedCrossRefGoogle Scholar
  37. 37.
    Killen, T. and Willis, D.K., 1996, Suppr ession of a sensor kinase-dependent phenotype in Pseud omonas sy ringae by ribosomal proteins L35 and L20. J. Bacteriol., 178: 1548–1555.Google Scholar
  38. 38.
    Kloek, A.P., Brooks, D.M., and Kunkel, B.N., 2000, A dsbA mutant of Pseudomonas syringae exhibits reduced virulence and partial impairment of type III secretion. Mol. Plant Pathol., 1: 139–150.PubMedCrossRefGoogle Scholar
  39. 39.
    Laville, J., Voisard, C., Keel, C, Maurhofer, M., Defago, G., and Haas, D., 1992, Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Natl. Acad. Sci. USA, 89: 1562–1566.PubMedCrossRefGoogle Scholar
  40. 40.
    Liao, C H., McCallus, D.E., and Felt, W.E, 1994, Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Mol. Plant Microbe Interact., 7: 391–400.PubMedCrossRefGoogle Scholar
  41. 41.
    Liao, C H., McCallus, D.E., Wells, J.M., Tzean, S.S., and Kang, G.Y., 1996, The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Can. J. Microbiol., 42: 177–182.PubMedCrossRefGoogle Scholar
  42. 42.
    Mazzola, M. and White, F.F, 1994, A mutation in the indole-3-acetic acid biosynthesis path-way of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J. Bacterial., 176: 1374–1382.Google Scholar
  43. 43.
    Messer, W. and Weigel, C., 1996, Initiation of chromosome replication. In H.E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn, Vol. 2, pp. 1579–1601. ASM Press, Washington, DC.Google Scholar
  44. 44.
    Miller, C. D., Mortensen, W.S., Braga, G.D., and Anderson, A.J., 2001, The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-UV in sunlight. Curl Microbiol, 43: 374–377.CrossRefGoogle Scholar
  45. 45.
    Nakayashiki, T. and Inokuchi, H., 1998, Novel temperature-sensitive mutants of Escherichia coli that are unable to grow in the absence of wild-type tRNA6Leu. J. Bacteriol, 180: 2931–2935.PubMedGoogle Scholar
  46. 46.
    Old, I.G., MacDougall, J., Saint Girons, I., and Davidson, B.E., 1992, Mapping of genes on the linear chromosome of the bacterium Borrelia burgdorferi: Possible locations for its origin of replication. FEMS Microbiol. Lett., 78: 245–250.PubMedCrossRefGoogle Scholar
  47. 47.
    Palleroni, N.J., 1984, Genus I. Pseudomonas. In J.G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol.1, pp. 141–199. Williams and Wilkins, Baltimore.Google Scholar
  48. 48.
    Preston, G., Deng, W.L., Huang, H.C, and Collmer, A., 1998, Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J. Bacteriol., 180: 4532–4537.PubMedGoogle Scholar
  49. 49.
    Rehm, B.H. and Valla, S., 1997, Bacterial alginates: Biosynthesis and applications. Appl. Microbiol. Biotechnol., 48: 281–288.PubMedCrossRefGoogle Scholar
  50. 50.
    Rich, J.J., Hirano, S.S., and Willis, D.K., 1992, Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation. Appl. Environ. Microbiol., 58: 1440–1446.PubMedGoogle Scholar
  51. 51.
    Rich, J.J., Kinscherf, T.G., Kitten, T., and Willis, D.K., 1994, Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J. Bacteriol., 176: 7468–7475.PubMedGoogle Scholar
  52. 52.
    Rich, J.J. and Willis, D.K., 1997, Multiple loci of seudomonas syringae pv. syringae are involved in pathogenicity on bean: Restoration of one lesion-deficient mutant requires two tRNA genes. J. Bacteriol., 179: 2247–2258.PubMedGoogle Scholar
  53. 53.
    Schaad, N.W., Vidaver, A.K., Lacy, G.H., Rudolph, K., and Jones, J.B., 2000, Evaluation of proposed amended names of several pseudomonads and xanthomonads and recommendations. Phytopathology, 90: 208–213.PubMedCrossRefGoogle Scholar
  54. 54.
    Silo-Suh, L., Suh, S.J., Sokol, P.A., and Ohman, D.E., 2002, A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhIR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA, 99: 15699–15704.PubMedCrossRefGoogle Scholar
  55. 55.
    Smirnova, A.V., Wang, L., Rohde, B., Budde, I., Weingart, H., and Ullrich, M.S., 2002, Control of temperature-responsive synthesis of the phytotoxin coronatine in Pseudomonas syringae by the unconventional two-component system CorRPS. J. Mol. Microbiol. Biotechnol., 4: 191–196.PubMedGoogle Scholar
  56. 56.
    Sundin, G.W., Kidambi, S.P., Ullrich, M., and Bender, C.L., 1996, Resistance to ultraviolet light in Pseudomonas syringae: Sequence and functional analysis of the plasmid-encoded rulAB genes. Gene, 177: 77–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Sundin, G.W. and Murillo, J., 1999, Functional analysis of the Pseudomonas syringae rulAB determin ant in tolerance to ultraviolet B (290-320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ. Microbiol., 1: 75–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Waspi, U., Blanc, D., Winkler, T., Ruedi, P., and Dudler, R., 1998, Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant Microbe Interact., 11: 727–733.CrossRefGoogle Scholar
  59. 59.
    Willis, D.K., Holmstadt, J.J., and Kinscherf, T.G., 2001, Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production. Appl. Environ. Microbiol., 67: 1400–1403.PubMedCrossRefGoogle Scholar
  60. 60.
    Willis, D.K., Hrabak, E.M., Lindow, S.E., and Panopoulos, N.J., 1988, Construction and characterization of Pseudomonas syringae recA mutant strains. Mol. Plant Microbe Interact., 1: 80–86.CrossRefGoogle Scholar
  61. 61.
    Willis, D.K., Hrabak, E.M., Rich, J.J., Barta, T.M., Lindow, S.E., and Panopoulos, N.J., 1990, Isolation and characterization of a Pseudomonas syringae pathovar syringae mutant deficient in lesion formation on bean. Mol. Plant Microbe Interact., 3: 149–156.CrossRefGoogle Scholar
  62. 62.
    Xiao, Y., Heu, S., Yi, J., Lu, Y., and Hutcheson, S.W., 1994, Identification of a putative alternate sigma factor and characterization ofa multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol., 176: 1025–1036.PubMedGoogle Scholar
  63. 63.
    Yamamoto, S., Kasai, H., Arnold, D.L., Jackson, R.W., Vivian, A., and Harayama, S., 2000, Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology, 146(Pt 10): 2385–2394.PubMedGoogle Scholar
  64. 64.
    Zwiesler-Vollick, J., Plovanich-Jones, A.E., Nomura, K., Bandyopadhyay, S., Joardar, V., Kunkel, B.N., and He, S.Y., 2002, Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol. Microbiol., 45: 1207–1218.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • David K. Willis
    • 1
    • 2
  • Thomas G. Kinscherf
    • 2
  1. 1.USDA Agricultural Research ServiceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Plant PathologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations