The Type III Secretion Systems of Plant-Associated Pseudomonads: Genes and Proteins on the Move

  • Gail M. Preston
  • Alan Collmer
Chapter

Abstract

Pseudomonas syringae and Pseudomonas fluorescens are plant-associated bacteria that have very different relationsh ips with plants. P. syringae is a foliar pathogen that affects a wide range of crop plants, whereas P. fluorescens is a commensal that colonizes the rhizosphere and can even benefit plants as a plant growth-promoting rhizobacterium (PGPR). The type III secretion system (TTSS), which is capable of injecting virulence effector proteins into plant cells, is central to the pathogenicity of P. syringae and is also present in some strains of P. fluorescens. The TTSS is thus a logical entry point for exploring the diversity and evolution of plant-associated pseudomonads and the molecular basis for their differing interactions with plants.

Keywords

Surfactant Codon Recombination Fructose Oligosaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizawa, S.I., 2001, Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett., 202: 157–164.Google Scholar
  2. 2.
    Alfano, J.R., Bauer, D.W, Milos, T.M., and Collmer, A., 1996, Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally nonpolar deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol., 19: 715–728.Google Scholar
  3. 3.
    Alfano, J.R., Charkowski, A.O., Deng, W-L., Badel, J.L., Petnicki-Ocwieja, T., van Dijk, K., and Collmer, A., 2000, The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA, 97: 4856–4861.Google Scholar
  4. 4.
    Alfano, J.R. and Collmer, A., 1997, The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J. Bacteriol., 179: 5655–5662.Google Scholar
  5. 5.
    Anderson, D.M., Fouts, D.E., Collmer, A., and Schneewind, O., 1999, Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc. Natl. Acad. Sci. USA, 96: 12839–12843.Google Scholar
  6. 6.
    Anderson, D.M. and Schneewind, O.,1997, A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science, 278: 1140–1143.Google Scholar
  7. 7.
    Axtell, M.J. and Staskawicz, B.J., 2003, Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 112: 369–377.Google Scholar
  8. 8.
    Badel, J.L., Nomura, K., Bandyopadhyay, S., Shimizu, R., Collmer, A., and He, S.Y., 2003, Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol. Microbiol. 49: 1239–1251.Google Scholar
  9. 9.
    Baron-Epel, O., Gharyal, P.K., and Schindler, M., 1988, Pectins as mediators of wall porosity in soybean cells. Planta, 175: 389–395.Google Scholar
  10. 10.
    Bell, K.S., Avrova, A.O., Holeva, M.C., Cardle, L., Morris, W., De long, W., Toth, I.K., Waugh, R., Bryan, G.J., and Birch, P.R., 2002, Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with Escherichia coli. Microbiology, 148: 1367–1378.Google Scholar
  11. 11.
    Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthe sis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev., 63: 266–292.Google Scholar
  12. 12.
    Bjorklof, K., Nurrniaho-Lassila, E.L., Klinger, N., Haatela, K., and Romantschuk, M., 2000, Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. J. Appl. Microbiol., 89: 423–432.Google Scholar
  13. 13.
    Bjorklof, K., Suoniemi, A., Haahtela, K., and Romantschuk, M., 1995, High frequency of conjugation versus plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiology, 141: 2719–2727.Google Scholar
  14. 14.
    Bleves, S., Marenne, M.N., Detry, G., and Cornelis, G.R., 2002, Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J. Bacteriol. 184: 3214–3223.Google Scholar
  15. 15.
    Blocker, A., Jouihri, N., Larquet, E., Gounon, P., Ebel, F., Parsot, C., Sansonetti, P., and Allaoui, A., 2001, Structure and composition of the Shigella jlexneri “needle complex,” a part of its type III seereton. Mol. Microbiol., 39: 652–663.Google Scholar
  16. 16.
    Blocker, A., Komoriya, K., and Aizawa, S., 2003, Type III secretion systems and bacterial flagella: Insights into their function from structural similarities. Proc. Natl. Acad. Sci. USA, 100: 3027–3030.Google Scholar
  17. 17.
    Bloemberg, G.Y. and Lugtenberg, B.J.J., 2001, Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol., 4: 343–350.Google Scholar
  18. 18.
    Bogdanove, A.J., Beer, S.V., Bonas, U., Boucher, C.A., Collmer, A., Coplin, D.L., Comelis, G.R., Huang, H.-C., Hutcheson, S.W, Panopoulos, N.J., and Van Gijsegem, F., 1996, Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol., 20: 681–683.Google Scholar
  19. 19.
    Bogdanove, A.J., Kim, J.F., Wei, Z., Kolchinsky, P., Charkowski, A.O., Conlin, A.K., Collmer, A., and Beer, S.V., 1998, Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA, 95: 1325–1330.Google Scholar
  20. 20.
    Bohin, J.P., 2000, Osmoregulated periplasmic glucans in Protcobacteria. FEMS Microbiol. Lett., 186: 11–19.Google Scholar
  21. 21.
    Boureau, T., Routtu, J., Roine, E., Taira, S., and Romantschuk, M., 2002, Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves. Mol. Plant Pathol., 3: 451–460.Google Scholar
  22. 22.
    Boyd, A.P., Lambermont, I., and Cornelis, G.R., 2000, Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: Role of the SycE chaperone binding domain of YopE. J. Bacteriol., 182: 4811–4821.Google Scholar
  23. 23.
    Bozso, Z., Ott, P.G., Kecskes, M.L., and Klement, Z., 1999, Effect of heat and cycloheximide treatment of tobacco on the ability of Pseudomonas syringae pv. syringae 61 hrp/hrmA mutants to cause HR. Physiol. Mol. Plant Pathol., 55: 215–223.Google Scholar
  24. 24.
    Braun, P.G., Hildebrand, P.D., Ells, T.C., and Kobayashi, D.Y., 2001, Evidence and characterisation of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can. J. Microbiol., 47: 294–301.Google Scholar
  25. 25.
    Bretz, J., Losada, L., Lisboa, K., and Hutcheson, S.W., 2002, Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol., 45: 397–409.Google Scholar
  26. 26.
    Brown, I.R., Mansfield, J.W., Taira, S., Roine, E., and Romantschuk, M., 2001, Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. Mol. Plant Microbe Interact., 14: 394–404.Google Scholar
  27. 27.
    Buell, C.R., Joardar, Y., Lindeberg, M., Selengut, 1., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T., Durkin, A.S., Kolonay, J.R., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M.J., Haft, D.H., Nelson, W.C., Davidsen, T., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Vanaken, S.E., Feldblyum, T.Y., D’Ascenzo, M., Deng, W-L., Ramos, A.R., Alfano, J.R., Cartinhour, S., Chatterjee, A.K., Delancy, T.P., Lazarowitz, S.G., Martin, G.B., Schneider, D.J.., Tang, X., Bender, C.L., White, O., Fraser, C.M., and Collmer, A., 2003, The complete sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100: 10181–10186.Google Scholar
  28. 28.
    Bull, C.T., Duffy, B., Voisard, C., Defago, G., Keel, C., and Haas, D., 2001, Characterisation of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie Van Leeuwenhoek, 79: 327–336.Google Scholar
  29. 29.
    Cangelosi, G.A., Martinetti, G., and Nester, E.W, 1990, Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-g1ucan. J. Bacteriol., 172: 2172–2174.Google Scholar
  30. 30.
    Cao, H., Baldini, R.L., and Rahme, L.G., 2001, Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol., 39: 259–284.Google Scholar
  31. 31.
    Casper-Lindley, C., Dahlbeck, D., Clark, E.T., and Staskawicz, B.J., 2002, Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA, 99: 8336–8341.Google Scholar
  32. 32.
    Charity, J.C., Pak, K., Delwiche, C.F., and Hutcheson, S.W, 2003, Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: Evidence for integron-like assembly from transposed gene cassettes. Mol. Plant-Microbe Interact., 16: 496–507.Google Scholar
  33. 33.
    Charkowski, A.O., Alfano, J.R., Preston, G., Yuan, J., He, S.Y., and Collmer, A., 1998, The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol., 180: 5211–5217.Google Scholar
  34. 34.
    Charkowski, A.O., Huang, H.-C., and Collmer, A., 1997, Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gram-negative bacteria. J. Bacteriol., 179: 3866–3874.Google Scholar
  35. 35.
    Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D.J., and Alfano, J.R., 2002, Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol., 10: 462–469.Google Scholar
  36. 36.
    Cornelis, G.R. and Van Gijsegem, F., 2000, Assembly and function of type III secretory systems. Annu. Rev. Microbiol., 54: 735–774.Google Scholar
  37. 37.
    Dale, C., Plague, G.R., Wang, B., Ochman, H., and Moran, N.A., 2002, Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl. Acad. Sci. USA, 99: 12397–12402.Google Scholar
  38. 38.
    Dale, C., Young, S.A., Haydon, D.T., and Welburn, S.C., 2001, The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. USA, 98: 1883–1888.Google Scholar
  39. 39.
    Deng, W-L. and Huang, H.-C., 1998, Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. J. Bacteriol., 181: 2298–2301.Google Scholar
  40. 40.
    Deng, W-L., Preston, G., Collmer, A., Chang, C.-J., and Huang, H.-C., 1998, Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG. hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J. Bacteriol., 180: 4523–4531.Google Scholar
  41. 41.
    Deng, W-L., Rehm, A., Charkowski, A., Rojas, C.M., and Collmer, A., 2003, Pseudomonas syringae exchangeable effector loci: Sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol., 185: 2592–2602.Google Scholar
  42. 42.
    Desikan, R., Hancock, J.T., Ichimura, K., Shinozaki, K., and Neill, S.J., 2001, Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol., 126: 1579–1587.Google Scholar
  43. 43.
    Dye, D.W, Bradbury, J.F., Goto, M., Hayward, A.C., Lelliott, R.A., and Schroth, M.N., 1980, International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol., 59: 153–168.Google Scholar
  44. 44.
    Edqvist, P.J., Olsson, J., Lavander, M., Sundberg, L., Forsberg, A., Wolf-Watz, H., and Lloyd, S.A., 2003, YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol., 185: 2259–2266.Google Scholar
  45. 45.
    Felix, G., Duran, J.D., Volko, S., and Boller, T., 1999, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J., 18: 265–276.Google Scholar
  46. 46.
    Ffrench-Constant, R., Waterfield, N., Daborn, P., Joyce, S., Bennett, H., Au, C., Dowling, A., Boundy, S., Reynolds, S., and Clarke, D., 2003, Photorhabdus: Towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol. Rev., 26: 433–456.Google Scholar
  47. 47.
    Fiedler, W. and Rotering, H., 1988, Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J. Biol. Chem., 263: 14684–14689.Google Scholar
  48. 48.
    Filloux, A., Michel, G., and Bally, M., 1998, GSP-dependent protein secretion in gramnegative bacteria: The Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev., 22: 177–198.Google Scholar
  49. 49.
    Fouts, D.E., Abramovitch, R.B., Alfano, J.R., Baldo, A.M., Buell, C.R., Cartinhour, S., Chatterjee, A.K., D’Ascenzo, M., Gwinn, M.L., Lazarowitz, S.G., Lin, N.-C., Martin, G.B., Rehm, A.H., Schneider, D.J., van Dijk, K., Tang, X., and Collmer, A., 2002, Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controll ed by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA, 99: 2275–2280.Google Scholar
  50. 50.
    Fouts, D.E., Badcl, J.L., Ramos, A.R., Rapp, R.A., and Collmer, A., 2003, A Pseudomonas syringae pv. tomato DC3000 Hrp (type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato. Mol. Plant-Microbe Interact., 16: 43–52.Google Scholar
  51. 51.
    Gal, M., Preston, G.M., Spiers, A.J., and Rainey, P.B., 2003, Genes encoding a cellulo sic polymer contribute to the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol. Ecol. 12: 3109–3121.Google Scholar
  52. 52.
    Gaudriault, S., Malandrin, L., Paulin, J.-P., and Barny, M.-A., 1997, DspA, an essential path-ogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol. Microbiol., 26: 1057–1069.Google Scholar
  53. 53.
    Gaudriault, S., Paulin, J.P., and Barny, M.A., 2002, The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of theHrp-secreted DspA/E pathogenicity factor. Mol. Plant Pathol., 3: 313–320.Google Scholar
  54. 54.
    Gonzalez, C., Restrepo, S., Tohme, J., and Verdier, V., 2002, Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiol. Lett., 215: 23–31.Google Scholar
  55. 55.
    Greenberg, J.T. and Vinatzer, B.A., 2003, Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr. Opin. MicrobioL., 6: 20–28.Google Scholar
  56. 56.
    Grimm, C., Aufsatz, w., and Panopoulo s, N.J., 1995, The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol., 15: 155–165.Google Scholar
  57. 57.
    Guttman, D.S. and Greenberg, J.T., 2001, Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol. Plant-Microbe Interact., 14: 145–155.Google Scholar
  58. 58.
    Guttman, D.S., Vinatzer, B.A., Sarkar, S.P., Ranall, M.V., Kettler, G., and Greenberg, J.T., 2002, A functional screen for the Type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science, 295: 1722–1726.Google Scholar
  59. 59.
    Hacker, J., Blum-Oehler, G., Muhldorfer, I., and Tschape, H., 1089-1097, Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol. Microbiol., 23: 1089–1097.Google Scholar
  60. 60.
    Ham, J.H., Bauer, D.W., Fouts, D.E., and Collmer, A., 1998, A cloned Erwinia chrysanthemi Hrp (type III protein secretion) system functions in Escherichia coli to deliver Pseudomonas syringae Avr signals to plant cells and to secrete Avr proteins in culture. Proc. Natl. Acad. Sci. USA, 95: 10206–10211.Google Scholar
  61. 61.
    Hasset, D.J., Cuppoletti, J., Trapnell, B., Lymar, S.V., Rowe, J.J., Yoon, S.S., Hilliard, G.M., Parvatiyar, K., Kamani, M.C., Wozniak, D.J., Hwang, S.-H., McDermott, T.R., and Ochsner, U.A, 2002, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. Adv. Drug Delivery Rev., 54: 1425–1443.Google Scholar
  62. 62.
    Haussler, S., Ziegler, I., Lottel, A., Gotz, F.v, Rohde, M., Wehrnhohner, D., Saravanamuthu, S., Tummler, B., and Steinmetz, I., 2003, Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J. Med. Microbiol., 52: 295–301.Google Scholar
  63. 63.
    He, S.Y., Huang, H.-C., and Collmer, A., 1993, Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 73: 1255–1266.Google Scholar
  64. 64.
    He, S.Y. and Jin, Q., 2003, The Hrp pilus: Learning from flagella. Curr Opin Microbiol., 6: 15–19.Google Scholar
  65. 65.
    Hendrickson, E.L., Guevera, P., and Ausubel, F.M., 2000, The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J. Bacteriol., 182: 3508–3516.Google Scholar
  66. 66.
    Hendrickson, E.L., Guevera, P., Peñaloza-Vázquez, A., Shao, J., Bender, C., and Ausubel, F.M., 2000, Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. J. Bacteriol., 182: 3498–3507.Google Scholar
  67. 67.
    Hensel, M., Nikolaus, T., and Egelseer, C., 1999, Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol. Microbiol., 31: 489–498.Google Scholar
  68. 68.
    Hienonen, E., Roine, E., Romantschuk, M., and Taira, S., 2002, mRNA stability and the secretion signal of HrpA, a pilin secreted by the type III system in Pseudomonas syringae. Mol. Genet Genomics, 266: 973–978.Google Scholar
  69. 69.
    Higgins, D., Thompson, J., and Gibson, T., 1994, CLUSTAL W: Improving the sensitivity of progress ive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22: 4673–4680.Google Scholar
  70. 70.
    Hirano, S., Charkowski, A.O., Collmer, A., Willis, D.K., and Upper, C.D., 1999, Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc. Natl. Acad. Sci. USA, 96: 9851–9856.Google Scholar
  71. 71.
    Hirano, S.S. and Upper, C.D., 1990, Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol., 28: 155–177.Google Scholar
  72. 72.
    Hirano, S.S. and Upper, C.D., 2000, Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbial. Mol. Bioi. Rev., 64: 624–653.Google Scholar
  73. 73.
    Hoyos, M.E., Stanley, C.M., He, S.Y., Pike, S., Pu, X.-A., and Novacky, A., 1996, The interaction of Harpinspss, with plant cell walls. Mol. Plant-Microbe Interact., 9: 608–616.Google Scholar
  74. 74.
    Hrabak, E.M. and Willis, D.K., 1992, The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol., 174: 3011–3020.Google Scholar
  75. 75.
    Hsueh, P.-R., Teng, L.-J., Pan, H.-J., Chen, Y.-C., Sun, C.-C., Ho, S.-W., and Luh, K.-T., 1998, Outbreak of Pseudomonas fluorescens bacterem ia among oncology patients. J. Clin. Microbiol., 36: 2914–29 17.Google Scholar
  76. 76.
    Hu, W.Q., Yuan, J., Jin, Q.L., Hart, P., and He, S.Y., 2001, Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact., 14: 234–241.Google Scholar
  77. 77.
    Hueck, C.J., 1998, Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev., 62: 379–433.Google Scholar
  78. 78.
    Hutcheson, S.W, Bretz, J., Sussan, T., Jin, S., and Pak, K., 2001, Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J. Bacteriol., 183: 5589–5598.Google Scholar
  79. 79.
    Huynh, T.V., Dahlbeck, D., and Staskawicz, B.J., 1989, Bacterial blight of soybean: Regulati on of a pathogen gene determining host cult ivar specificity. Science, 245: 1374–1377.Google Scholar
  80. 80.
    Innes, R.W, Bent, A.F., Kunkel, B.N., Bisgrove, S.R., and Staskawicz, B.J., 1993, Molecular analysis of avirulence gene avrRpt2 and identificat ion of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol., 175: 4859–4869.Google Scholar
  81. 81.
    Jin, Q. and He, S.Y., 2001, Role of the Hrp pilus in type III protein secret ion in Pseudomonas syringae. Science, 294: 2556–2558.Google Scholar
  82. 82.
    Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A.L., and He, S.Y., 2001, Visualization of secreted Hrp and Avr proteins along the Hrp pilu s durin g type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol., 40: 1129–1139.Google Scholar
  83. 83.
    Julio, S.M., Heithoff, D.M., Sinsheimer, R.L., Low, D.A., and Mahan, M.J., 2002, DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE express ion and secretion and host immune responses to infection. Inject. Immun., 70: 1006–1009.Google Scholar
  84. 84.
    Karlin sey, J.E., Lonner, J., Brown, K.L., and Hughes, K.T., 2000, Translation/secretion coupling by type III secretion systems. Cell, 102: 487–497.Google Scholar
  85. 85.
    Keen, N.T., 1990, Gene-for-gene complementarity in plant-pathogen interact ions. Annu. Rev. Genet., 24: 447–463.Google Scholar
  86. 86.
    Kimbrough, T.G. and Miller, S.I., 2000, Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA, 97: 11008–11013.Google Scholar
  87. 87.
    Kobayashi, D.Y., Tamaki, S.J., and Keen, N.T., 1989, Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc. Natl. Acad. Sci. USA, 86: 157–161.Google Scholar
  88. 88.
    Koebnik, R., 2001, The role of bacterial pili in protein and DNA translocation. Trends Microbiol., 9: 586–590.Google Scholar
  89. 89.
    Koster, M., Bitter, W., de Cock, H., Allaoui, A., Cornel is, G.R., and Tommassen, J., 1997, The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol., 26: 789–797.Google Scholar
  90. 90.
    Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukha n, A., Galán, J.E., and Aizawa, S.-I., 1998, Supramolecular structu re of the Salmonella typhimurium type III protein secretion system. Science, 280: 602–605.Google Scholar
  91. 91.
    Lee, J., Klusener, B., Tsiamis, G., Stevens, C., Neyt, C., Tampakaki, A.P., Panopoulos, N.J., Noller, J., Weiler, E.W, Corne lis, G.R., Mansfield, J.W, and Nurnberger, T., 2001, HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc. Natl. Acad. Sci. USA, 98: 289–294.Google Scholar
  92. 92.
    Li, C.M., Brown, I., Mansfield, J., Stevens, C., Boureau, T., Romantschuk, M., and Taira, S., 2002, The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effe ctor protein HrpZ. EMBO J., 21: 1909–1915.Google Scholar
  93. 93.
    Lindgren, P.B., 1997, The role of hrp genes durin g plant-bacterial interactions. Annu. Rev. Phytopathol., 35: 129–152.Google Scholar
  94. 94.
    Lindgren, P.B., Peet, R.C., and Panopoulos, N.J., 1986, Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol., 168: 512–522.Google Scholar
  95. 95.
    Lloyd, S.A., Forsberg, A., Wol f-Watz, H., and Franc is, M.S., 2001, Target ing exported substrates to the Yersinia TTSS: Different functions for different signals? Trends Microbiol., 9: 367–371.Google Scholar
  96. 96.
    Lloyd, S.A., Norman, M., Rosqvist, R., and Wolf-Watz, H., 2001, Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol. Microbiol., 39: 520–532.Google Scholar
  97. 97.
    Loub ens, I., Debarbieux, L., Bohin, A., Lacroix, J.M., and Bohin, J.P., 1993, Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol. Microbiol., 10: 329–340.Google Scholar
  98. 98.
    Lu, S.E., Scholz-Schroeder, B.K., and Gross, D.C., 2002, Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact., 15: 43–53.Google Scholar
  99. 99.
    Lundberg, U., Vinatzer, U., Berdnik, D., von Gabain, A., and Baccarini, M., 1999, Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes. J. Bacteriol., 181: 3433–3437.Google Scholar
  100. 100.
    Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L., 2003, Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112: 379–389.Google Scholar
  101. 101.
    Marenda, M., Brito, B., Callard, D., Genin, S., Barberis, P., Boucher, C., and Arlat, M., 1998, PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol. Microbiol., 27: 437–453.Google Scholar
  102. 102.
    Marie, C., Broughton, W.J., and Deakin, W.J., 2001, Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol., 4: 336–42.Google Scholar
  103. 103.
    Minamino, T. and Macnab, R.M., 1999, Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol., 181: 1388–1394.Google Scholar
  104. 104.
    Missiakas, D. and Raina, S., 1998, The extracytoplasmic function sigma factors: Role and regulation. Mol. Microbiol., 28: 1059–1066.Google Scholar
  105. 105.
    Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M., and Drenkard, E., 2003, Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun., 71: 2404–2413.Google Scholar
  106. 106.
    Mor, H., Manulis, S., Zuck, M., Nizan, R., Coplin, D.L., and Barash, I., 2001, Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact., 14: 431–436.Google Scholar
  107. 107.
    Mudgett, M.B., Chesnokova, O., Dahlbeck, D., Clark, E.T., Rossier, O., Bonas, U., and Staskawicz, B.J., 2000, Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc. Natl. Acad. Sci. USA, 97: 13324–13329.Google Scholar
  108. 108.
    Mudgett, M.B. and Staskawicz, B.J., 1999, Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: Demonstration of secretion and processing during bacterial pathogenesis. Mol. Microbiol., 32: 927–941.Google Scholar
  109. 109.
    Nehl, D.8., Allen, S.J., and Brown, J.E, 1997, Deleterious rhizosphere bacteria: An integrating perspective. Appl. Soil Ecol., 5: 1–20.Google Scholar
  110. 110.
    Niepold, F., anderson, D., and Mills, D., 1985, Cloning determinant s of pathogenesis from Pseudomonas syringae pathovar syringae. Proc. Natl. Acad. Sci. USA, 82: 406–410.Google Scholar
  111. 111.
    Nimchuk, Z., Marois, E., Kjemtrup, S., Leister, R.T., Katagiri, F., and Dangl, J.L., 2000, Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell, 101: 353–363.Google Scholar
  112. 112.
    Page, F., Altabe, S., Hugouvieux-Cott e-Pattat, N., Lacroix, J.M., Robert-Baudouy, J., and Bohin, J.P., 2001, Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J. Bacteriol., 183: 3134–3141.Google Scholar
  113. 113.
    Parsot, C., Hamiaux, C., and Page, A.L., 2003, The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol., 6: 7–14.Google Scholar
  114. 114.
    Payne, P.L. and Straley, S.C., 1998, YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J. Bacteriol., 180: 3882–3890.Google Scholar
  115. 115.
    Peñaloza-Vázquez, A., Preston, G.M., Collmer, A., and Bender, C.L., 2000, Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology, 146: 2447–2456.Google Scholar
  116. 116.
    Persello-Cartieaux, F., Nussaume, L., and Robaglia, C., 2003, Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ., 26: 189–199.Google Scholar
  117. 117.
    Petnicki-Ocwieja, T., Schneider, D.J., Tam, V.C., Chancey, S.T., Shan, L., Jamir, Y., Schechter, L.M., Buell, C.R., Tang, X., Collmer, A., and Alfano, J.R., 2002, Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 99: 7652–7657.Google Scholar
  118. 118.
    Pirhonen, M.U., Lidell, M.C., Rowley, D.L., Lee, S.W., Jin, S., Liang, Y., Silverstone, S., Keen, N.T., and Hutcheson, S.W, 1996, Phenotypic expression of Pseudomonas syringaeavr genes in E. coli is linked to the activities of the hrp-encoded secretion system. Mol. Plant-Microbe Interact., 9: 252–260.Google Scholar
  119. 119.
    Possot, O.M., Letellier, L., and Pugsley, A.P., 1997, Energy requirement for pullulanase secretion by the main terminal branch of the general secretory pathway. Mol. Microbiol., 24: 457–464.Google Scholar
  120. 120.
    Preston, G., Deng, W-L., Huang, H.-C., and Collmer, A., 1998, Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J. Bacteriol., 180: 4532–4537.Google Scholar
  121. 121.
    Preston, G., Huang, H.-C., He, S.Y., and Collmer, A., 1995, The HrpZ protein s of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact., 8: 717–732.Google Scholar
  122. 122.
    Preston, G.M., 2003, Plant perceptions of plant growth-promoting Pseudomonas. Phil. Trans. Royal. Soc. B (in press).Google Scholar
  123. 123.
    Preston, G.M., Bertrand, N., and Rainey, P.B., 2001, Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol., 41: 999–1014.Google Scholar
  124. 124.
    Pukatzki, S., Kessin, R.H., and Mekalanos, J.J., 2002, The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 99: 3159–3164.Google Scholar
  125. 125.
    Puri, N., Jenner, C., Bennet, M., Stewart, R., Mansfield, J., Lyons, N., and Taylor, J., 1997, Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant-Microbe Interact., 10: 247–256.Google Scholar
  126. 126.
    Rahrne, L.G., Mindrinos, M.N., and Panopoulos, N.J., 1992, Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. Phaseolicola. J. Bacteriol., 174: 3499–3507.Google Scholar
  127. 127.
    Ramamurthi, K.S. and Schneewind, O., 2002, Type III protein secretion in Yersinia species. Annu. Rev. Cell Dev. Bioi., 18: 107–133.Google Scholar
  128. 128.
    Ramamurthi, K.S. and Schneewind, O., 2002, Yersinia enterocolitica type III secretion: Mutational analysis of the YopQ secretion signal. J. Bacteriol., 184: 3321–3328.Google Scholar
  129. 129.
    Rohmer, L., Kjemtrup, S., Marchesini, P., and Dangl, J.L., 2003, Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol. Microbiol., 47: 1545–1562.Google Scholar
  130. 130.
    Roine, E., Wei, W., Yuan, J., Nurmiaho-Lass ila, E.-L., Kalkk inen, N., Romantschuk, M., and He, S.Y., 1997, Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 94: 3459–3464.Google Scholar
  131. 131.
    Rosqvist, R., Hakansson, S., Forsberg, A., and Wolf-Watz, H., 1995, Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J., 14: 4187–4195.Google Scholar
  132. 132.
    Sanchez-Contreras, M., Martin, M., Villacieros, M., O’Gara, F., Bonilla, I., and Rivilla, R., 2002, Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol., 184: 1587–1596.Google Scholar
  133. 133.
    Sawada, H., Suzuki, F., Matsuda, I., and Saitou, N., 1999, Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J. Mol. Evol., 49: 627–644.Google Scholar
  134. 134.
    Schuster, M. and Grimm, C., 2000, Domain switching between hrpR and hrpS affects the regulatory function of the hybrid genes in Pseudomonas syringae pv. phaseolicola. Mol. Plant Pathol., 1: 233–241.Google Scholar
  135. 135.
    Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., and Abe, A., 2001, Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA, 98: 11638–11643.Google Scholar
  136. 136.
    Shan, L.B., Thara, V.K., Martin, G.B., Zhou, J.M., and Tang, X.Y., 2000, The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell, 12: 2323–2337.Google Scholar
  137. 137.
    Shen, H. and Keen, N.T., 1993, Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol., 175: 5916–5924.Google Scholar
  138. 138.
    Sory, M.-P. and Cornelis, G.R., 1994, Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol., 14: 583–594.Google Scholar
  139. 139.
    Spencer, D.H., Kas, A., Smith, E.E., Raymond, C.K., Sims, E.H., Hastings, M., Burns, J.L., Kaul, R., and Olson, M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J. Bacteriol., 185: 1316–1325.Google Scholar
  140. 140.
    Staskawicz, B.J., Dahlbeck, D. and Keen, N.T., 1984, Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race specific incompatibility on Glycine max (L.) Merr. Proc. Natl. Acad. Sci. USA, 81: 6024–6028.Google Scholar
  141. 141.
    Strobel, N.E., Ji, C., Gopalan, S., Kuc, J.A., and He, S.Y., 1996, Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J., 9: 431–439.Google Scholar
  142. 142.
    Studholme, D.J. and Dixon, R., 2003, Domain architectures of sigma-54-dependent tran-scriptional activators. J. Bacteriol., 185: 1757–1767.Google Scholar
  143. 143.
    Suh, Y. and Benedik, M.J., 1997, Secretion of nuclease across the outer membrane of Serratia marcescens and its energy requirements. J. Bacteriol., 179: 677–683.Google Scholar
  144. 144.
    Sundin, G.W. and Bender, C.L., 1996, Molecular analysis of closely related copper-and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid, 35: 98–107.Google Scholar
  145. 145.
    Szurek, B., Rossier, O., Hause, G., and Bonas, O., 2002, Type III-dependenttranslocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol. Microbiol., 46: 13–23.Google Scholar
  146. 146.
    Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol., 44: 342–349.Google Scholar
  147. 147.
    Taguchi, F., Shimizu, R., Nakajima, R., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol. Biochem., 41: 165–174.Google Scholar
  148. 148.
    Taguchi, F., Tanaka, R., Kinoshita, S., Ichinose, Y., Imura, Y., andi, S., Toyoda, K., Shiraishi, T., and Yamada, T., 2001, Harpinpsta from Pseudomonas syringae pv. tabaci is defective and deficient in its expression and HR-inducingactivity. J. Gen. Plant Pathol., 67: 116–123.Google Scholar
  149. 149.
    Taira, S., Tuimala, J., Roine, E., Nurmiaho-Lassila, E.L., Savilahti, H., and Romantschuk, M., 1999, Mutational analysis of the Pseudomonas syringae pv. tomato hrpA gene encoding Hrp pilus subunit. Mol. Microbiol., 34: 737–744.Google Scholar
  150. 150.
    Takaya, A., Suzuki, M., Matsui, H., Tomoyasu, T., Sashinami, H., Nakane, A., and Yamamoto, T., 2003, Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Inject. Immun., 71: 690–696.Google Scholar
  151. 151.
    Takaya, A., Tomoyasu, T., Tokumitsu, A., Morioka, M., and Yamamoto, T., 2002, The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J. Bacteriol., 184: 224–232.Google Scholar
  152. 152.
    Tamano, K., Aizawa, S., Katayama, E., Nonaka, T., Irnajoh-Ohmi, S., Kuwae, A., Nagai, S., and Sasakawa, C., 2000, Supramolecular structure of the Shigella type III secretion machinery: The needle part is changeable in length and essential for delivery of effectors. EMBO J., 19: 3876–3887.Google Scholar
  153. 153.
    Tan, M.W. and Ausubel, F.M., 2000, Caenorhabditis elegans:A model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbial., 3: 29–3 4.Google Scholar
  154. 154.
    Van den Ackerveken, G., Marois, E., and Bonas, U., 1996, Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell, 87: 1307–1 316.Google Scholar
  155. 155.
    van Dijk, K., Fouts, D.E., Rehm, A.H., Hill, A.R., Collmer, A., and Alfano, J.R., 1999, The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature-and pH-sensitive manner. J. Bacteriol., 181: 4790–4797.Google Scholar
  156. 156.
    van Dijk, K., Tam, V.C., Records, A.R., Petnicki-Ocwieja, T., and Alfano, J.R., 2002, The ShcA protei n is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae. Mol. Microbiol., 44: 1469–1481.Google Scholar
  157. 157.
    van Loon, L.C., Bakker, P.A.H.M., and Pieterse, C.M.J., 1998, Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 36: 453–483.Google Scholar
  158. 158.
    Vivian, A., Murillo, J., and Jackson, R.W., 2001, The roles of plasmids in phytopathogenic bacteria: Mobile arsenals? Microbiology, 147: 763–780.Google Scholar
  159. 159.
    Wattiau, P., Woestyn, S., and Cornelis, G.R., 1996, Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol., 20: 255–262.Google Scholar
  160. 160.
    Wei, W., Plovanich-Jones, A., Deng, W.-L., Collmer, A., Huang, H.-C., and He, S.Y., 2000, The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci. USA, 97: 2247–2252.Google Scholar
  161. 161.
    Wei, Z., Kim, J.F., and Beer, S.V., 2000, Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol. Plant-Microbe Interact., 13: 1251–1262.Google Scholar
  162. 162.
    Willis, D.K., Hrabak, E.M., Rich, J.J., Barta, T.M., Lindow, S.E., and Panopoulos, N.J., 1990, Isolation and characterization of a Pseudomonas syringae pv. syringae mutant deficient in lesion forming ability on bean. Mol. Plant-Microbe Interact., 3: 149–1 56.Google Scholar
  163. 163.
    Xiao, Y. and Hutcheson, S., 1994, A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol., 176: 3089–3091.Google Scholar
  164. 164.
    Xiao, Y., Lu, Y., Heu, S., and Hutcheson, S.W., 1992, Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacterial., 174: 1734–1741.Google Scholar
  165. 165.
    Xie, Z. and Chen, Z., 2000, Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant Microbe Interact., 13: 183–190.Google Scholar
  166. 166.
    Young, B.M. and Young, G.M., 2002, YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enteroco litica. J. Bacterial., 184: 1324–1334.Google Scholar
  167. 167.
    Young, G.M., Schmicl, D.H., and Miller, V.L., 1999, A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA, 96: 6456–6461.Google Scholar
  168. 168.
    Yuan, J. and He, S.Y., 1996, The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J. Bacteriol., 178: 6399–6402.Google Scholar
  169. 169.
    Zwiesler-vollick, J., Plovanich-Jones, A.E., Nomura, K., Brandyopadhyay, S., Joardar, V., Kunkel, B.N., and He, S.Y., 2002, Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol. Microbiol., 45: 1207–1218.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Gail M. Preston
    • 1
  • Alan Collmer
    • 2
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK
  2. 2.Department of Plant PathologyCornell UniversityIthacaUSA

Personalised recommendations