Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 179))

Abstract

When the number of independent units is not adequate to invoke large sample approximations in clustered data analysis, a situation that often arises in group randomized trials (GRTs), valid and efficient small sample inference becomes important. We review the current methods for analyzing data from small numbers of clusters, namely methods based on full distribution assumptions (mixed effect models), semi-parametric methods based on Generalized Estimating Equations (GEE), and non-parametric methods based on permutation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlett MS (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society, A, 160:268–282.

    Article  Google Scholar 

  • Braun T and Feng Z (2001) Optimal permutation tests for the analysis of group randomized trials. Journal of the American Statistical Association, 96:1424–1432.

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association, 88:9–25.

    Article  MATH  Google Scholar 

  • Chandra T and Ghosh J (1979) Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square variables. Sankhya A, 41:22–47.

    MathSciNet  MATH  Google Scholar 

  • Cox DR and Reid N (1987) Parameter orthogonality and approximate conditional inference 9 with discussion) Journal of the Royal Statistical Society Series B, 49:1–39.

    MathSciNet  MATH  Google Scholar 

  • Donner A, Eliasziw M, Klar N (1994) A comparison of methods for testing homogeneity of proportions for teratologic studies. Statistics in Medicine, 13:479–93.

    Article  Google Scholar 

  • Donner A, Klar N (2000) Design and Analysis of Cluster Randomization Trials In Health Research. New York, Oxford University Press.

    Google Scholar 

  • Edgington ES (1987) Randomization Tests Marcel Decker, New York.

    MATH  Google Scholar 

  • Emrich L, Piedmonte M (1992) On some small sample properties of generalized estimating equation Estimates for multivariate dichotomous outcomes. Journal of Statistical Computation and Simulationa, 41:19–29.

    Article  Google Scholar 

  • Evans B, Feng Z, Peterson AV (2001) A comparison of generalized linear mixed model procedures with Estimating equations for variance and covariance parameter Estimation in longitudinal studies and group randomized trials. Statistics in Medicine, 20:3353–3373.

    Article  Google Scholar 

  • Fay M, Graubard B (2001) Small-sample adjustment for Wald-type tests using sandwich Estimators. Biometrics, 57:1198–1206.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, McLerran D, Grizzle J (1996) A comparison of statistical methods for clustered data analysis with Gaussian error. Statistics in Medicine, 15:1793–806.

    Article  Google Scholar 

  • Feng Z, Diehr P, Peterson A, McLerran D (2001) Selected statistical issues in group randomized trials. Annual Review of Public Health, 22:167–87.

    Article  Google Scholar 

  • Frydenberg M and Jensen J (1989) Is the ‘improved likelihood ratio statistic’ really improved in the discrete case? Biometrika, 76:655–662.

    MathSciNet  MATH  Google Scholar 

  • Gail MH, Tan WY, and Piantadosi S (1988) Tests for no treatment effect in randomized clinical trials, Biometrika, 75:57–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Gail MH, Byar DP, Pechacek TF, Corle DK (1992) Aspects of statistical design for the Community Intervention Trial for Smoking Cessation (COMMIT). Controlled Clinical Trials, 123:6–21.

    Article  Google Scholar 

  • Gail MH, Mark SD, Carroll R, Greeen S, Pee D (1996) On design considerations and randomization-based inference for community intervention trials. Statistics in Medicine, 15:1069–92.

    Article  Google Scholar 

  • Good P Permutation Tests (1994) Springer-Verlag, New York.

    MATH  Google Scholar 

  • Harville D (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72:320–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Jennrich Rand Schluchter M (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42:805–820.

    Article  MathSciNet  MATH  Google Scholar 

  • Kackar A and Harville D (1984) Approximations for standard errors of Estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79:853–862.

    MathSciNet  MATH  Google Scholar 

  • Kauermann G, Carroll R (2001) A note on the efficiency of sandwich covariance matrix Estimation. Journal of the American Statistical Association, 96:1387–1396.

    Article  MathSciNet  MATH  Google Scholar 

  • Kenward M and Roger J (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53:983–997.

    Article  MATH  Google Scholar 

  • Laird N and Ware J (1982). Random-effects models for longitudinal data. Biometrics, 38:963–974.

    Article  MATH  Google Scholar 

  • Lehmann EL and Stein C (1949) On the theory of some non-parametric hypotheses. The Annals of Mathematical Statistics, 20:28–45.

    Article  MathSciNet  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73:13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons B, Peters D (2000) Applying Skovgaard’s modified directed likelihood statistic to mixed linear models. Journal of Statistical Computation and Simulations, 65:225–242.

    Article  MATH  Google Scholar 

  • MacKinnon JG, White H (1985) Some heteroscedasticity-consistent covariance matrix Estimators with improved finite sample properties. Journal of Econometrics, 29:305–325.

    Article  Google Scholar 

  • Mancl L and DeRouren T (2001) A covariance Estimator for GEE with improved small-sample properties. Biometrics, 57:126–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Maritz J, Jarrett R (1983) The use of statistics to examine the association between fluoride in drinking water and cancer death rates. Applied Statistics, 32:97–101.

    Article  Google Scholar 

  • McCulloch CE (1994) Maximum likelihood variance components Estimation for binary data. Journal of the American Statistical Association, 89:330–35.

    Article  MATH  Google Scholar 

  • McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92:162–70.

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch CE and Searle SR (2001) Generalized, Linear, and Mixed Models. New York, Wiley.

    MATH  Google Scholar 

  • McGilchrist CA. (1994) Estimation in Generalized Mixed Models. Journal of the Royal Statistical Society Series B, 56:61–69

    MathSciNet  MATH  Google Scholar 

  • Murray DM (1998) Design and Analysis of Group-Randomized Trials. New York, Oxford University Press.

    Google Scholar 

  • Neyman J, Iwaskiewicz K, and Kolodziejczyk T (1935) Statistical problems in agricultural experimentation. Journal of the Royal Statistical Society, 2:107–180.

    Google Scholar 

  • Pan W and Wall M (2002) Small-sample adjustments in using the sandwich variance Estimator in generalized Estimating equations. Statistics in Medicine, 21:1429–1441.

    Article  Google Scholar 

  • Park T (1993) A Comparison of the Generalized Estimating Equation Approach with the Maximum Likelihood Approach for Repeat ed measurements. Statistics in Medicine, 12:1723–1732.

    Article  Google Scholar 

  • Rao CR (1971) Minimum variance quadratic unbiased Estimation of variance components. Journal of Multivariate Analysis, 1:445–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Romano J (1990) On the behavior of randomization tests without a group invariance assumption, Journal of the American Statistical Association, 85:686–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Satterthwaite F (1941) Synthesis of variance. Psychometrika, 6:309–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Schall R (1991) Estimation in Generalized Linear Models with Random Effects. Biometrika, 40:917–927.

    Google Scholar 

  • Sharples K, Breslow N (1992) Regression analysis of correlated binary data: some small sample results for the Estimating equation approach. Journal of Statistical Computation and Simulations, 42:1–20.

    Article  MATH  Google Scholar 

  • Sorensen G, Thompson B, Glanz K, Feng Z, Kinne S, Diclemente C, Emmons K, Heimendinger J, Probart C, Lichtenstein E, for Working Well Trial (1996) Work site-based cancer prevention: primary results form the Working Well Trial. American Journal of Public Health, 86:939–947.

    Article  Google Scholar 

  • Thornquist M, Anderson G (1992) Small sample properties of generalized Estimating equations in group-randomized designs with gaussian response. Technical Report, Fred Hutchinson Cancer Research Center.

    Google Scholar 

  • Zucker D, Lieberman O, and Manor O (2000) Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society Series B, 62:827–838.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feng, Z., Braun, T., McCulloch, C. (2004). Small Sample Inference for Clustered Data. In: Lin, D.Y., Heagerty, P.J. (eds) Proceedings of the Second Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 179. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9076-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9076-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20862-6

  • Online ISBN: 978-1-4419-9076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics