Skip to main content

Optimal Structural Nested Models for Optimal Sequential Decisions

  • Chapter
Proceedings of the Second Seattle Symposium in Biostatistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 179))

Abstract

I describe two new methods for estimating the optimal treatment regime (equivalently, protocol, plan or strategy) from very high dimesional observational and experimental data: (i) g-estimation of an optimal double-regime structural nested mean model (drSNMM) and (ii) g-estimation of a standard single regime SNMM combined with sequential dynamic-programming (DP) regression. These methods are compared to certain regression methods found in the sequential decision and reinforcement learning literatures and to the regret modelling methods of Murphy (2003). I consider both Bayesian and frequentist inference. In particular, I propose a novel “Bayes-frequentist compromise” that combines honest subjective non- or semiparametric Bayesian inference with good frequentist behavior, even in cases where the model is so large and the likelihood function so complex that standard (uncompromised) Bayes procedures have poor frequentist performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Baraud, Y. (2002). Confidence balls in Gaussian regression, (to appear).

    Google Scholar 

  • Bertsekas, D.P. and Tsitsiklis, J.N. (1996). Neuro-dynamic programming. Belmont MA: Athena Scientific.

    MATH  Google Scholar 

  • Bickel, P.J. and Ritov, Y. (1988). Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankya Ser. A 50: 381–393.

    MathSciNet  MATH  Google Scholar 

  • Bickel, P.J., Klaassen, C., Ritov, Y., and Wellner, J. (1993). Efficient and adapted estimation for semiparametric models. Johns Hopkins, Baltimore.

    Google Scholar 

  • Cowell, R.G., Dawid, A.P., Lauritzen, S.L, and Spiegelhalter, D.J. (1999). Probabilistic networks in expert systems, New York: Springer-Verlag.

    Google Scholar 

  • Donald, S.G. and Newey, W.K. (1994). Series estimation of the semilinear models. Journal of Multivariate Analysis, 5): 30–40.

    Article  MathSciNet  Google Scholar 

  • Gill, R.D. and Robins, J.M. (2001). Causal inference for complex longitudinal data: the continuous case. Annals of Statistics, 29(6): 1785–1811

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman, M. and Lepski, O. (2002). Random rates and anisotropic regression (with discussion and rejoinder). Annals of Statistics, 30: 325–396.

    Article  MathSciNet  Google Scholar 

  • Li, KC. (1989). Honest Confidence Regions for Nonparametric Regression. The Annals of Statistics, 17(3):1001–1008.

    Article  MathSciNet  MATH  Google Scholar 

  • Laurent, B. (1996). Efficient estimation of integral functionals of a density. Annals of Statistics, 24(2): 659–681.

    Article  MathSciNet  MATH  Google Scholar 

  • Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28(5): 1302–1338.

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy, Susan. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical Society B, 65(2):331–355.

    Article  MATH  Google Scholar 

  • Ritov, Y. and Bickel, P. (1990) Achieving information bounds in non-and semi-parametric models. Annals of Statistics, 18: 925–938.

    Article  MathSciNet  MATH  Google Scholar 

  • Robins, J.M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods-Application to control of the healthy worker survivor effect. Mathematical Modelling, 7:1393–1512

    Article  MathSciNet  MATH  Google Scholar 

  • Robins, J.M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Communications in Statistics, 23:2379–2412.

    Article  MathSciNet  MATH  Google Scholar 

  • Robins, J.M. (1997). Causal Inference from Complex Longitudinal Data. Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics (120), M. Berkane, Editor. NY: Springer Verlag, pp. 69–117.

    Chapter  Google Scholar 

  • Robins, J.M. (1998a). Correction for non-compliance in equivalence trials. Statistics in Medicine, 17:269–302.

    Article  Google Scholar 

  • Robins, J.M., (1998b) Structural nested failure time models. Survival Analysis, P.K. Anderson and N. Keiding, Section Editors. The Encyclopedia of Biostatistics. P. Armitage and T. Colton, Editors. Chichester, UK: John Wiley & Sons. pp 4372–4389.

    Google Scholar 

  • Robins, J.M. (1999). Marginal Structural Models versus Structural Nested Models as Tools for Causal Inference. Statistical Models in Epidemiology: The Environment and Clinical Trials. M.E. Halloran and D. Berry, Editors, IMA Volume 116, NY: Springer-Verlag, pp. 95–134.

    Google Scholar 

  • Robins, J.M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999, pp. 6–10.

    Google Scholar 

  • Robins, J.M., Greenland, S. and Hu F-C. (1999). Rejoinder to Comments on “Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome.” Journal of the American Statistical Association, Applications and Case Studies, 94:708–712.

    MathSciNet  Google Scholar 

  • Robins, J.M. and Ritov, Y. (1997). Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statistics in Medicine, 16:285–319.

    Article  Google Scholar 

  • Robins J.M. and Rotnitzky A. (2001). Comment on the Bickel and Kwon article, “Inference for semiparametric models: Some questions and an answer” Statistica Sinica, 11(4):920–936. [“On Double Robustness.”]

    Google Scholar 

  • Robins, J.M. and Rotnitzky, A. (2003). Direct effects structural nested mean models. Annals of Statistics, (under review).

    Google Scholar 

  • Robins, J.M., Rotnitzky, A. and Scharfstein, D. (1999a). Sensitivity Analysis for Selection Bias and Unmeasured Confounding in Missing Data and Causal Inference Models. In: Statistical Models in Epidemiology: The Environment and Clinical Trials. Halloran, E. and Berry, D., eds. IMA Volume 116, NY: Springer-Verlag, pp. 1–92.

    Chapter  Google Scholar 

  • Robins J.M., Rotnitzky A., van der Laan M. (2000). Comment on “On Profile Likelihood” by Murphy SA and van der Vaart AW. Journal of the American Statistical Association-Theory and Methods, 95(450):431–435.

    Google Scholar 

  • Robins, J.M., Scheines, R., Spirtes, P., and Wasserman, L.(2003). Uniform consistency in causal inference. Biometrika, 90(3):491–515.

    Article  MathSciNet  Google Scholar 

  • Robins, J.M. and Wasserman L. (1997). Estimation of Effects of Sequential Treatments by Reparameterizing Directed Acyclic Graphs. Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, Providence Rhode Island, August 1–3, 1997. Dan Geiger and Prakash Shenoy (Eds.), Morgan Kaufmann, San Francisco, pp. 409–420.

    Google Scholar 

  • Robins, J.M. and van der Vaart, A.W. (2003). Non parametric confidence sets by cross-validation. (Technical Report).

    Google Scholar 

  • Robins, J.M. and van der Vaart, A.W. (2004). A unified approach to estimation in non-semiparametric models using higher order influence functions. (Technical Report)

    Google Scholar 

  • Small, C.G. and McLeish, D. (1994). Hilbert space methods in probability and statistical inference. New York: Wiley.

    Book  MATH  Google Scholar 

  • Sutton, R.S. and Barto, A.G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  • van der Laan, M. and Dudoit (2003) Asymptotics of cross-validated risk estimation in model selection and performance assessment, revised for publication in Annals of Statistics.

    Google Scholar 

  • van der Laan, M.J., Murphy, S., and Robins, J.M. (2003). Marginal structural nested models. (to be submitted).

    Google Scholar 

  • van der Laan M.J., Robins JM (1998). Locally efficient estimation with current status data and time-dependent covariates. Journal of the American Statistical Association, 93:693–701.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Laan, M. and Robins, J.M. (2002). Unified methods for censored longitudinal data and causality. Springer-Verlag.

    Google Scholar 

  • van der Vaart, A.W. (1991). On differentiable functionals. Annals of Statistics, 19:178–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Waterman, R.P. and Lindsay, B.G. (1996). Projected score methods for approximating conditional scores. Biometrika, 83(1): 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Wegkamp, TM. (2003) Model selection in nonparametric regression. Annals of Statistics, 31(1):252–273.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robins, J.M. (2004). Optimal Structural Nested Models for Optimal Sequential Decisions. In: Lin, D.Y., Heagerty, P.J. (eds) Proceedings of the Second Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 179. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9076-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9076-1_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20862-6

  • Online ISBN: 978-1-4419-9076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics